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Adversarial Examples
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Timeline:

“Adversarial Classification” Dalvi et al 2004: fool spam filter
“Evasion Attacks Against Machine Learning at Test Time”
Biggio 2013: fool neural nets

Szegedy et al 2013: fool ImageNet classifiers imperceptibly
Goodfellow et al 2014: cheap, closed form attack

(Goodfellow 2017)



Cross-model, cross-dataset

ceneralization
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Cross-technique transterability
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Enhancing Transter With
Ensembles

RMSD | ResNet-152 | ResNet-101 | ResNet-50 | VGG-16 | GoogleNet
-ResNel-152 | 17.17 0% 0% 0% 0% 0%
-ResNet-101 | 17.25 0% 1% 0% 0% 0%
-ResNet-50 17.25 0% 0% 2% 0% 0%
-VGG-16 17.80 0% 0% 0% 6% 0%
-GoogLeNet | 17.41 0% 0% 0% 0% 5%

Table 4: Accuracy of non-targeted adversarial images generated using the optimization-based ap-
proach. The first column indicates the average RMSD of the generated adversarial images. Cell
(1, 7) corresponds to the accuracy of the attack generated using four models except model 7 (row)
when evaluated over model 7 (column). In each row, the minus sign “—” indicates that the model
of the row is not used when generating the attacks. Results of top-5 accuracy can be found in the
appendix (Table 14).

(Liu et al, 2016)

(Goodfellow 2017)



Transterability Attack

Target model with
unknown weights,
machine learning
algorithm, training
set; maybe non-
differentiable

N

\Adversarial

examples

Substitut

model wit.

e model

» mimicking target

n known,

differentiab!

e function

A

(Szegedy 2013, Papernot 2016)
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Thermometer Encoding: One
Hot Way to Resist
Adversarial Examples

v 2

Jacob Aurko Roy* Colin Raffel lan
Buckman™ Goodfellow

*joint first author



Linear Extrapolation

Vulnerabilities
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Neural nets are “too linear”
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Plot from “Explaining and Harnessing Adversarial Examples”’, Goodfellow et al, 2014 (Goodfellow 2017)



Difficult to train extremely
nonlinear hidden layers

To train:

changing this weight needs to
have a large, predictable effect

To detend:

changing this input needs

X BN

to have a small or
unpredictable effect



Idea: edit only the input layer

Train
only
this
part
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Observation: PixelRNN shows
one-hot codes work

0 255

Plot from “Pixel Recurrent Neural Networks”, van den Oord et al, 2016
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Fast Improvement FEarly in Learning

Accuracy
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Adversarial Test Accuracy

Large improvements on SVHN
direct (“white box”) attacks
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Large Improvements against
CIFAR-10 direct (“white box”) attacks
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Other results

e Improvement on CIFAR-100
e (Still very broken)
e Improvement on MNIST

e Please quit caring about MNIST

(Goodfellow 2017)



Caveats

e Slight drop in accuracy on clean examples

e Only small improvement on black-box transfer-
based adversarial examples

(Goodfellow 2017)



Ensemble Adversarial Training
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Estimating the Subspace
Dimensionality
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Transfer Attacks Against
Inception ResNet v2 on ImageNet
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Competition

Al Fight Club Could Help Save
Us from a Future of Super-

Smart Cyberattacks

MIT
Technology
Review

Best defense so far on ImageNet:

Ensemble adversarial training.

Used as at least part of all top 10 entries in dev round 3

(Goodfellow 2017)



Get 1involved!

https:/ /github.com /tensorflow /cleverhans
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