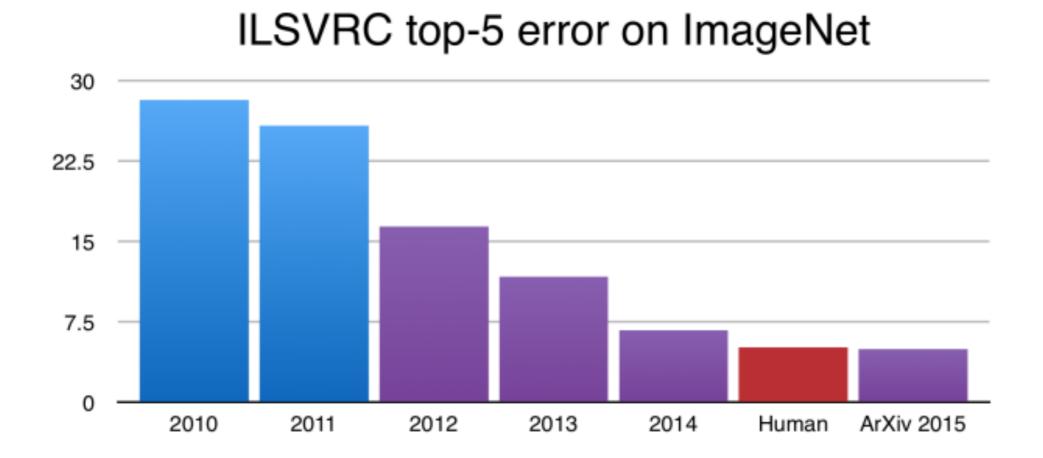
Adversarially Robust Optimization and Generalization

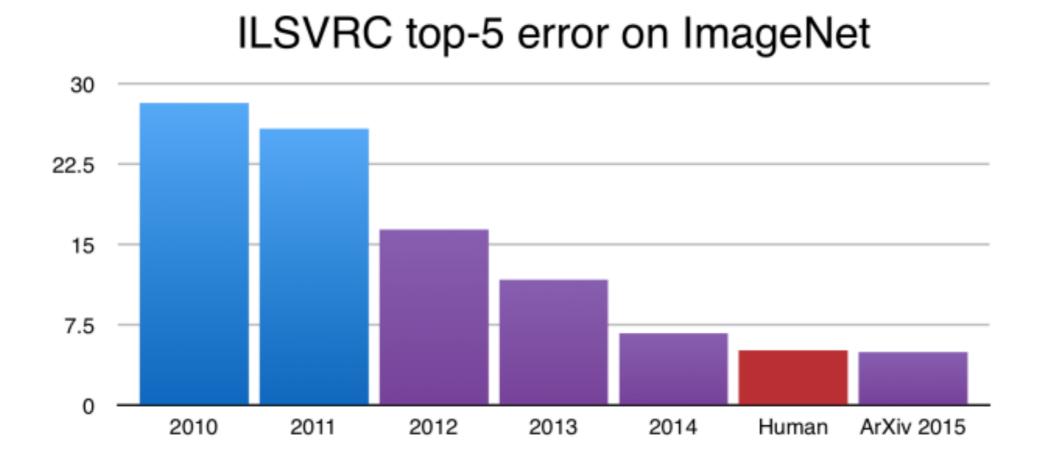
Ludwig Schmidt MIT → UC Berkeley

Based on joint works with Logan Engstrom (MIT), Aleksander Madry (MIT), Aleksandar Makelov (MIT), Dimitris Tsipras (MIT), Kunal Talwar (Google), and Adrian Vladu (Boston University).

Recent Progress in ML



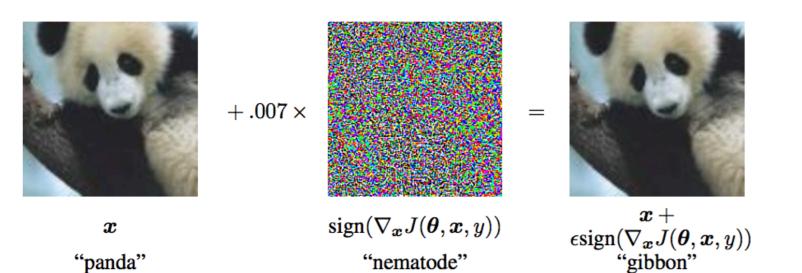
Recent Progress in ML



Have we *really* achieved human-level performance?

Lack of Robustness

Adversarial Examples

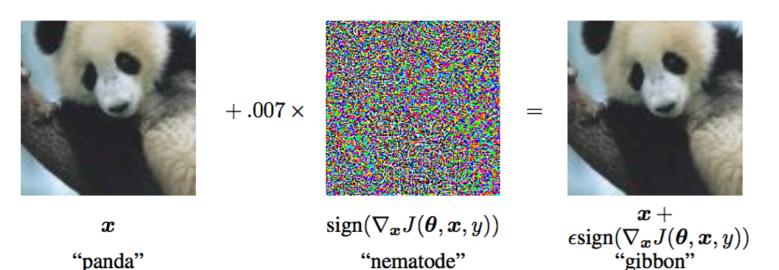


[Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, Rob Fergus, 2014]

[Athalye, Engstrom, Ilyas, Kwok, 2017]

Lack of Robustness

Adversarial Examples



[Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, Rob Fergus, 2014]

[Athalye, Engstrom, Ilyas, Kwok, 2017]

Translations + rotations (shifts by <10% pixels, <30° rotations) CIFAR10: $93\% \rightarrow 8\%$ accuracy ImageNet: 76% $\rightarrow 31\%$ accuracy [Engstrom, Tsipras, Schmidt, Madry, 2017]

Adversarially Robust Generalization

"Standard" Generalization

 $\mathop{\mathbb{E}}_{x \sim \mathcal{D}} \left[\mathsf{loss}(x, \theta) \right]$

Adversarially Robust Generalization

"Standard" Generalization

$$\mathop{\mathbb{E}}_{x\sim\mathcal{D}}\left[\operatorname{loss}(x,\theta)\right]$$

Adversarially Robust Generalization

$$\mathbb{E}_{x \sim \mathcal{D}} \begin{bmatrix} \max_{x' \in P(x)} \log(x', \theta) \\ 1 \end{bmatrix}$$
Perturbation set: rotations, translations, small ℓ_{∞} perturbations, ...

Adversarially Robust Generalization

"Standard" Generalization

$$\mathop{\mathbb{E}}_{x\sim\mathcal{D}}\left[\operatorname{loss}(x,\theta)\right]$$

Adversarially Robust Generalization

$$\mathbb{E}_{x \sim \mathcal{D}} \begin{bmatrix} \max_{x' \in P(x)} \log(x', \theta) \\ 1 \end{bmatrix}$$
Perturbation set: rotations, translations, small ℓ_{∞} perturbations, ...

What is the right set of perturbations?

This talk: assume the set P is given.

Long History

ANNALS OF MATHEMATICS Vol. 46, No. 2, April, 1945

STATISTICAL DECISION FUNCTIONS WHICH MINIMIZE THE MAXIMUM RISK

By Abraham Wald

(Received November 7, 1944)

1. Introduction

In some previous publications (see [1] and the last chapter in [2]) the author outlined a theory of statistical inference which deals with the following general problem: Let $X = (X_1, \dots, X_n)$ be a set of random variables and suppose that the joint cumulative distribution function $F(t_1, \dots, t_n)$ of the random variables X_1, \dots, X_n is not known. However it is known that $F(t_1, \dots, t_n)$ is an element of a given class Ω of distribution functions. Consider a system Sof subsets of Ω and for each element ω of S let H_{ω} denote the hypothesis that the joint distribution function of X_1, \dots, X_n is an element of ω . Furthermore, denote by H_S the system of all hypotheses H_{ω} corresponding to all elements ω of S. Let $E = (x_1, \dots, x_n)$ denote an observation on X, i.e., x_i denotes an observed value of X_i $(i = 1, 2, \dots, n)$. The totality of all possible observations E on X is the *n*-dimensional Cartesian space and is called the sample space. Any point of the sample space is called a sample point. The problem

Why This Guarantee?

Why This Guarantee? $\mathbb{E}_{x \sim \mathcal{D}} \left[\max_{x' \in P(x)} \mathsf{loss}(x', \theta) \right]$

If a classifier satisfies this property, we avoid arms races.

JSMA \rightarrow Defensive Distillation \rightarrow Tuned JSMA [Papernot et al. '15], [Papernot et al. '16], [Carlini et al. '17]

FGSM → Feature Squeezing, Ensembles → Tuned Lagrange [Goodfellow et al. '15], [Abbasi et al. '17], [Xu et al. '17]; [He et al. '17]

How Can We Get There?

How Can We Get There?

$$\mathbb{E}_{x \sim \mathcal{D}} \left[\max_{\substack{x' \in P(x)}} \mathsf{loss}(x', \theta) \right]$$

Standard image classifiers do not satisfy this property.

How Can We Get There?

$$\mathbb{E}_{x \sim \mathcal{D}} \left[\max_{\substack{x' \in P(x)}} \mathsf{loss}(x', \theta) \right]$$

Standard image classifiers do not satisfy this property.

How does robustness affect **optimization** and **sample complexity**?

Main problem:

$$\min_{\theta} \mathop{\mathbb{E}}_{x \sim \mathcal{D}} \left[\max_{\substack{x' \in P(x)}} \mathsf{loss}(x', \theta) \right]$$

[Madry, Makelov, Schmidt, Tsipras, Vladu, 2017]

Main problem:

$$\min_{\theta} \mathbb{E}_{x \sim \mathcal{D}} \left[\max_{\substack{x' \in P(x)}} \mathsf{loss}(x', \theta) \right]$$

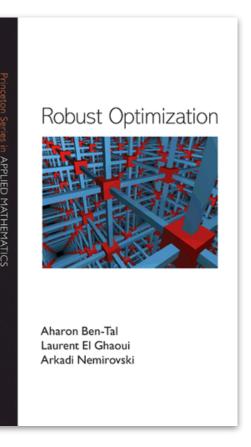
[Madry, Makelov, Schmidt, Tsipras, Vladu, 2017]

Main problem:

$$\min_{\theta} \mathbb{E}_{x \sim \mathcal{D}} \left[\max_{\substack{x' \in P(x)}} \mathsf{loss}(x', \theta) \right]$$

Convert to empirical risk:

$$\min_{\theta} \sum_{i=1}^{n} \max_{x' \in P(x_i)} \text{loss}(x', \theta)$$



[Madry, Makelov, Schmidt, Tsipras, Vladu, 2017]

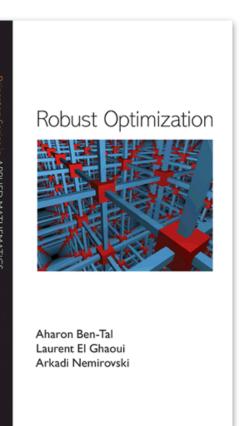
Main problem:

$$\min_{\theta} \mathbb{E}_{x \sim \mathcal{D}} \left[\max_{\substack{x' \in P(x)}} \mathsf{loss}(x', \theta) \right]$$

Convert to empirical risk:

$$\min_{\substack{\theta \\ i=1}} \sum_{x' \in P(x_i)}^{n} \log(x', \theta)$$

min part:
run SGD
[Madry, Makelov, Schmidt, Tsipras, Vladu, 2017]



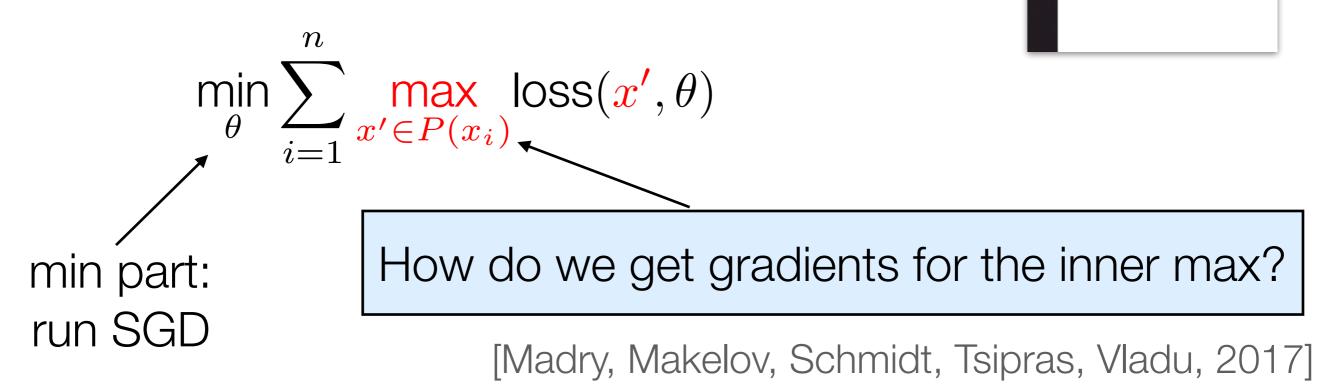
Robust Optimization

Aharon Ben-Tal Laurent El Ghaoui Arkadi Nemirovski

Main problem:

$$\min_{\theta} \mathbb{E}_{x \sim \mathcal{D}} \left[\max_{\substack{x' \in P(x)}} \mathsf{loss}(x', \theta) \right]$$

Convert to empirical risk:



Good Gradients = Good Attacks

Danskin's Theorem

Simplified, but holds for **non-convex** losses: Let

$$\phi_x(\theta) = \max_{x' \in P(x)} \log(x', \theta)$$

and let x_{θ}^* be a constrained maximizer of $loss(\cdot, \theta)$. Then $\nabla \phi_x(\theta) = \nabla_{\theta} loss(x_{\theta}^*, \theta)$

Good Gradients = Good Attacks

Danskin's Theorem

Simplified, but holds for **non-convex** losses: Let

$$\phi_x(\theta) = \max_{x' \in P(x)} \log(x', \theta)$$

and let x^*_θ be a constrained maximizer of ${\rm loss}(\cdot,\theta)$. Then $\nabla\phi_x(\theta)\ =\ \nabla_\theta {\rm loss}(x^*_\theta,\theta)$

Overall algorithm: adversarial training.

→ Principled approach for $\min_{\theta} \mathbb{E}_{x \sim D} \left| \max_{x' \in P(x)} \operatorname{loss}(x', \theta) \right|$

Good Gradients = Good Attacks

Danskin's Theorem

Simplified, but holds for **non-convex** losses: Let

$$\phi_x(\theta) = \max_{x' \in P(x)} \log(x', \theta)$$

and let x^*_θ be a constrained maximizer of $\mathsf{loss}(\cdot,\theta)$. Then $\nabla \phi_x(\theta) \ = \ \nabla_\theta \mathsf{loss}(x^*_\theta,\theta)$

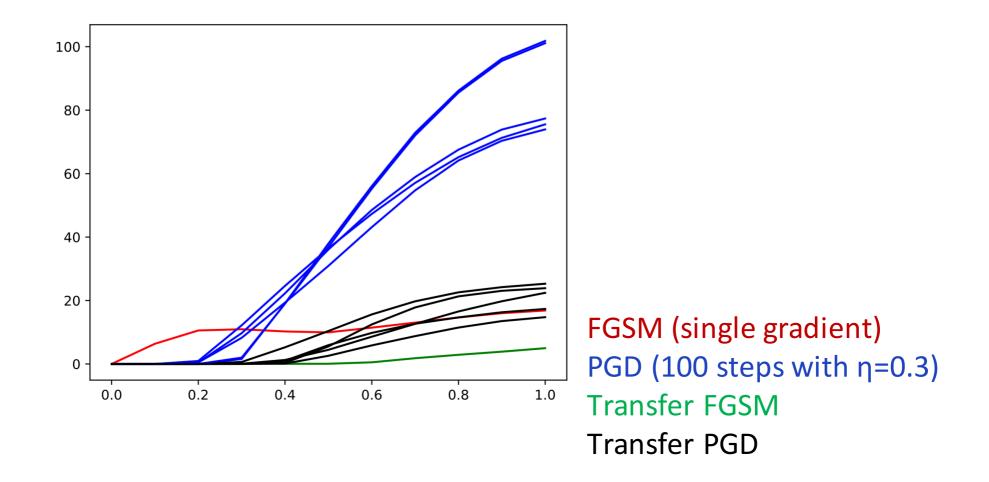
Overall algorithm: adversarial training.

→ Principled approach for $\min_{\theta} \mathbb{E}_{x \sim D} \left| \max_{x' \in P(x)} \operatorname{loss}(x', \theta) \right|$

Crucial point: need to find the best possible attack.

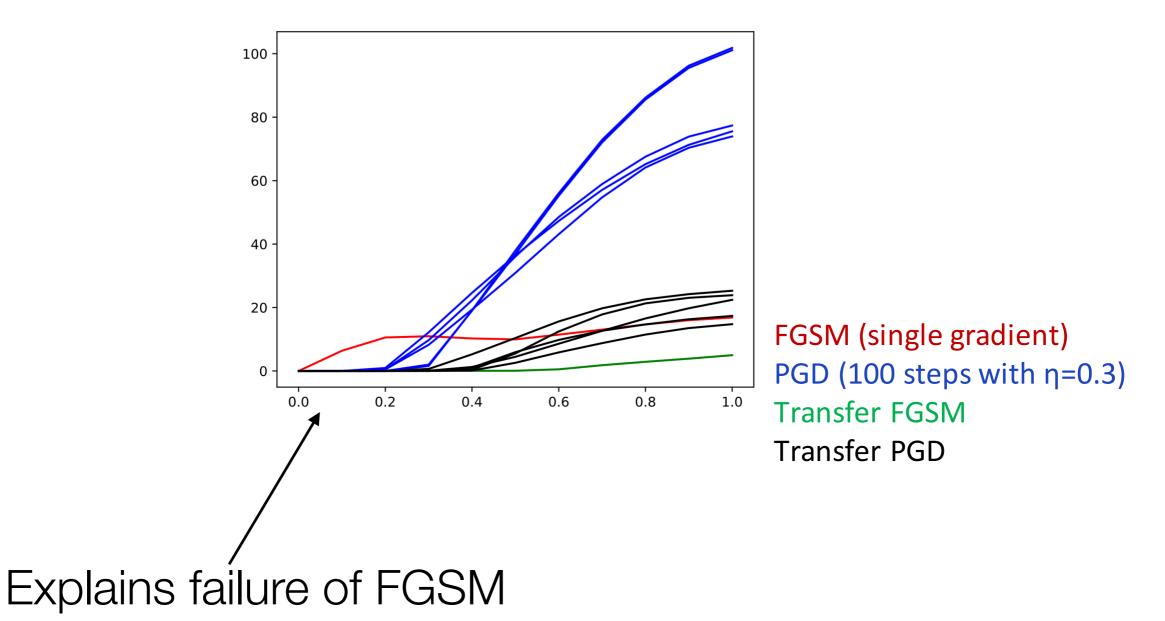
Is There Any Hope?

Non-concave maximization problem.



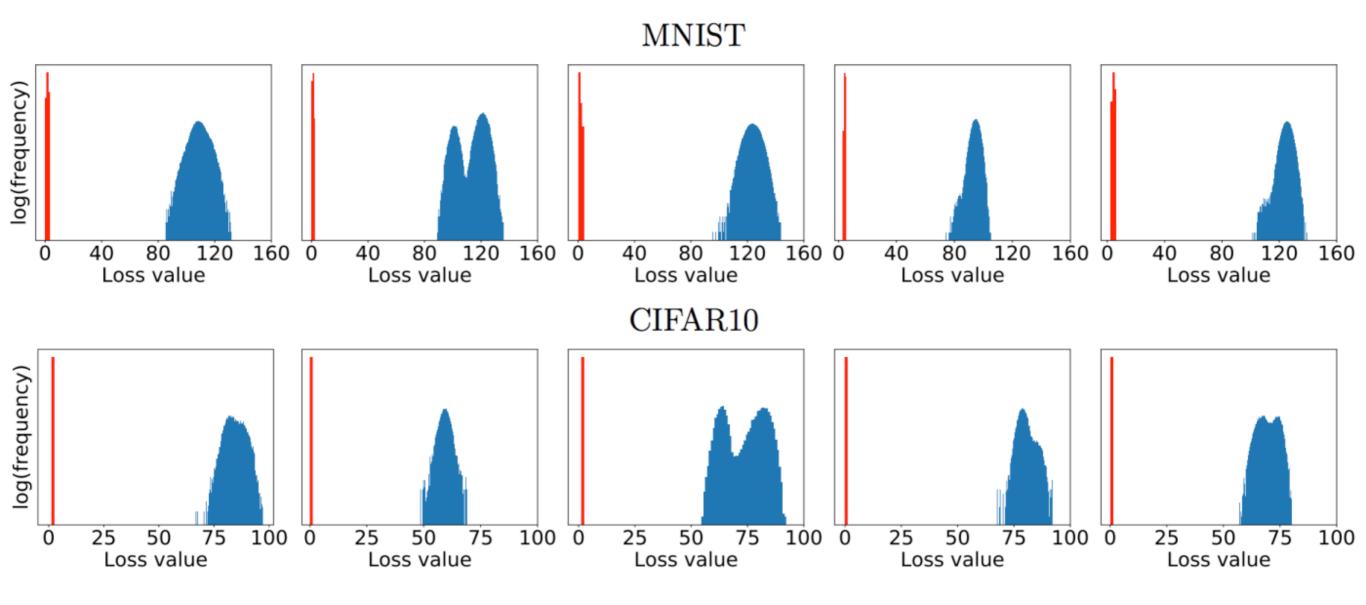
Is There Any Hope?

Non-concave maximization problem.



Loss Landscape

Explore loss surface with randomly restarted PGD (100k trials):



Many local maxima, but loss values concentrate.

Results: Robust Classifiers?

Results

MNIST (eps = 0.3): 90% accuracy vs white-box 93% accuracy vs black-box

CIFAR10 (eps = 8): 46% accuracy vs white-box 63% accuracy vs black-box

Results: Robust Classifiers?

Results

MNIST (eps = 0.3): 90% accuracy vs white-box 93% accuracy vs black-box

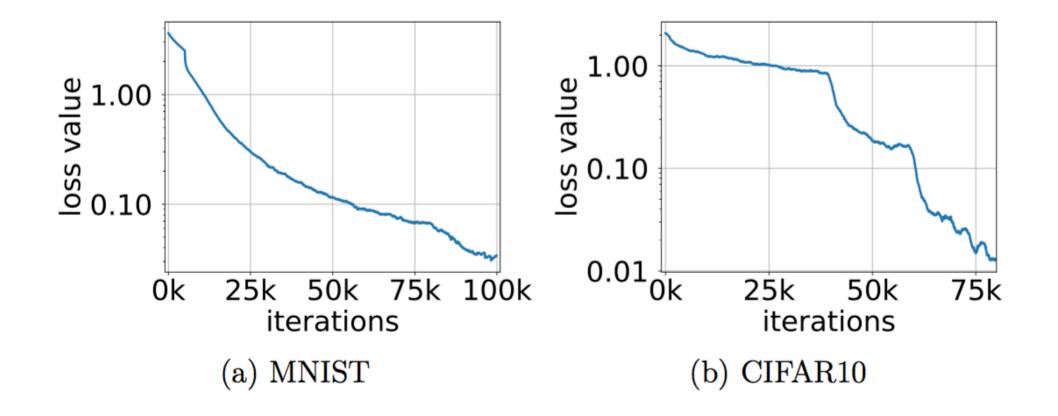
CIFAR10 (eps = 8): 46% accuracy vs white-box 63% accuracy vs black-box

Public challenges since June (see github).

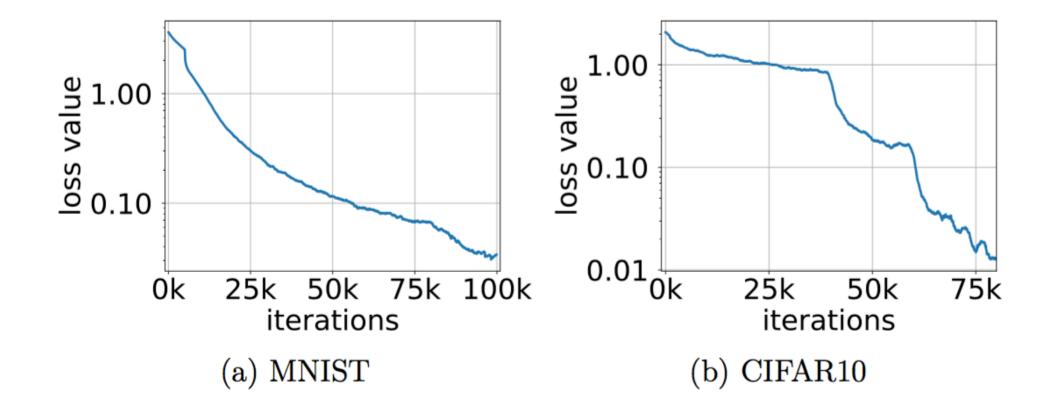
Top black-box attacks

93.5% PGD against three copies of the network (Florian Tramer)

What About CIFAR10?



What About CIFAR10?



Optimization succeeds, but the model **overfits** on CIFAR10: 100% train **adv.** accuracy, but only 48% on test.

Robust Generalization

Does robustness require more data?

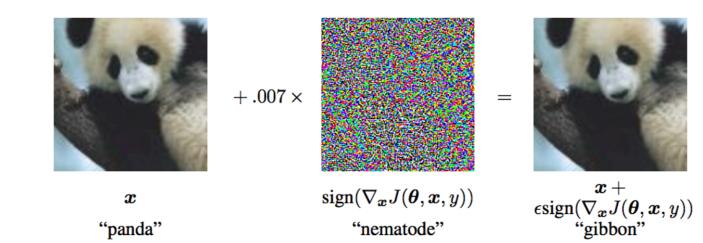
Theorem (informal): There is a distribution over points in R^d with the following property: Learning a ℓ_{∞} robust linear classifier for this distribution requires \sqrt{d} more samples than learning a non-robust classifier.

Conclusions

• Robust generalization is a prerequisite for secure ML.

 Adversarial training (a.k.a. robust optimization) with strong enough attacks is a principled defense.

 Optimization is only half of the picture: We need to take care of adversarially robust generalization too



Questions

- What robustness guarantees should ML-based systems provide?
- Are there trade-offs between robust and standard generalization?
- What compromises in mathematical rigor are acceptable?
- How can we verify ML-based systems?