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Have we really achieved human-level performance?
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[Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan 
Bruna, Dumitru Erhan, Ian Goodfellow, Rob Fergus, 2014]

Adversarial Examples

[Athalye, Engstrom, Ilyas, Kwok, 2017]

Translations + rotations 
 (shifts by <10% pixels, <30° rotations)
CIFAR10:  93% → 8% accuracy 
ImageNet: 76% → 31% accuracy
[Engstrom, Tsipras, Schmidt, Madry, 2017]



Adversarially Robust 
Generalization

“Standard” Generalization

E
x⇠D

[ loss(x, ✓) ]



Adversarially Robust 
Generalization

“Standard” Generalization

Adversarially Robust Generalization

E
x⇠D

[ loss(x, ✓) ]

Perturbation set: rotations, translations, 
                           small        perturbations, … `1

E
x⇠D


max

x

02P (x)
loss(x0

, ✓)

�



Adversarially Robust 
Generalization

“Standard” Generalization

Adversarially Robust Generalization

E
x⇠D

[ loss(x, ✓) ]

Perturbation set: rotations, translations, 
                           small        perturbations, … `1

E
x⇠D


max

x

02P (x)
loss(x0

, ✓)

�

What is the right 
set of perturbations? This talk: assume the set P is given.
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Why This Guarantee?

If a classifier satisfies this property, we avoid arms races. 

JSMA   →   Defensive Distillation   →   Tuned JSMA 
[Papernot et al. ’15], [Papernot et al. ‘16], [Carlini et al. ‘17] 

FGSM →  Feature Squeezing, Ensembles →  Tuned Lagrange 
[Goodfellow et al. ‘15], [Abbasi et al. ‘17], [Xu et al. ‘17]; [He et al. ‘17] 
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How Can We Get There?

How does robustness affect optimization 
and sample complexity?
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Standard image classifiers do not satisfy this property.
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min
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max
x

02P (xi)
loss(x0

, ✓)

Convert to empirical risk:

How do we get gradients for the inner max?min part: 
run SGD
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Good Gradients = Good Attacks
Danskin’s Theorem 
Simplified, but holds for non-convex losses:   Let

and let      be a constrained maximizer of                . Then

Crucial point: need to find the best possible attack.

Overall algorithm: adversarial training.
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Is There Any Hope?
Non-concave maximization problem.

FGSM	(single	gradient)
PGD	(100	steps	with	η=0.3)
Transfer	FGSM
Transfer	PGD



Is There Any Hope?
Non-concave maximization problem.

FGSM	(single	gradient)
PGD	(100	steps	with	η=0.3)
Transfer	FGSM
Transfer	PGD

Explains failure of FGSM



Loss Landscape
Explore loss surface with randomly restarted PGD (100k trials):

Many local maxima, but loss values concentrate.



Results: Robust Classifiers?
Results 
MNIST (eps = 0.3): 90% accuracy vs white-box 
                               93% accuracy vs black-box 

CIFAR10 (eps = 8): 46% accuracy vs white-box 
                               63% accuracy vs black-box



Results: Robust Classifiers?
Results 
MNIST (eps = 0.3): 90% accuracy vs white-box 
                               93% accuracy vs black-box 

CIFAR10 (eps = 8): 46% accuracy vs white-box 
                               63% accuracy vs black-box

Top black-box attacks 
92.8% “Generating Adversarial Examples with Adversarial  
             Networks” 
93.5% PGD against three copies of the network (Florian Tramer)

Public challenges since June (see github).
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What About CIFAR10?

Optimization succeeds, but the model overfits on CIFAR10: 
    100% train adv. accuracy, but only 48% on test.



Robust Generalization
Does robustness require more data?

Theorem (informal): There is a distribution over points in Rd  
    with the following property: Learning a        robust linear 
    classifier for this distribution requires       more samples 
    than learning a non-robust classifier.

`1p
d



Conclusions
• Robust generalization is a prerequisite for secure ML. 

• Adversarial training (a.k.a. robust optimization) with strong 
enough attacks is a principled defense. 

• Optimization is only half of the picture: We need to take care      
of adversarially robust generalization too



Questions

• What robustness guarantees should ML-based systems provide?  

• Are there trade-offs between robust and standard generalization? 

• What compromises in mathematical rigor are acceptable? 

• How can we verify ML-based systems? 


