Adversarially Robust Optimization and Generalization

Ludwig Schmidt

MIT → UC Berkeley

Based on joint works with Logan Engstrom (MIT), Aleksander Madry (MIT), Aleksandar Makelov (MIT), Dimitris Tsipras (MIT), Kunal Talwar (Google), and Adrian Vladu (Boston University).
Recent Progress in ML

ILSVRC top-5 error on ImageNet

![Bar chart showing ILSVRC top-5 error on ImageNet from 2010 to 2014 and Human and ArXiv 2015 results.](chart.png)
Recent Progress in ML

Have we *really* achieved human-level performance?
Lack of Robustness

Adversarial Examples

\[x + \epsilon \text{sign}(\nabla_x J(\theta, x, y)) = x + \epsilon \text{sign}(\nabla_x J(\theta, x, y)) \]

“panda”

“nematode”

“gibbon”

[Athalye, Engstrom, Ilyas, Kwok, 2017]
Lack of Robustness

Adversarial Examples

$\frac{x}{x_0} \times \frac{x}{x_0} = \frac{x}{x_0}$

“panda” → “nematode” → “gibbon”

Translations + rotations
(shifts by <10% pixels, <30° rotations)

CIFAR10: 93% → 8% accuracy
ImageNet: 76% → 31% accuracy

[Athalye, Engstrom, Ilyas, Kwok, 2017]

[Engstrom, Tsipras, Schmidt, Madry, 2017]
Adversarially Robust Generalization

“Standard” Generalization

\[\mathbb{E}_{x \sim \mathcal{D}} \left[\text{loss}(x, \theta) \right] \]
Adversarially Robust Generalization

“Standard” Generalization

$$\mathbb{E}_{x \sim D} \left[\text{loss}(x, \theta) \right]$$

Adversarially Robust Generalization

$$\mathbb{E}_{x \sim D} \left[\max_{x' \in P(x)} \text{loss}(x', \theta) \right]$$

Perturbation set: rotations, translations, small ℓ_∞ perturbations, ...
Adversarially Robust Generalization

“Standard” Generalization

$$\mathbb{E}_{x \sim D} \left[\text{loss}(x, \theta) \right]$$

Adversarially Robust Generalization

$$\mathbb{E}_{x \sim D} \left[\max_{x' \in P(x)} \text{loss}(x', \theta) \right]$$

Perturbation set: rotations, translations, small l_∞ perturbations, ...

What is the right set of perturbations?

This talk: assume the set P is given.
STATISTICAL DECISION FUNCTIONS WHICH MINIMIZE THE
MAXIMUM RISK

By Abraham Wald

(Received November 7, 1944)

1. Introduction

In some previous publications (see [1] and the last chapter in [2]) the author outlined a theory of statistical inference which deals with the following general problem: Let \(X = (X_1, \ldots, X_n) \) be a set of random variables and suppose that the joint cumulative distribution function \(F(t_1, \ldots, t_n) \) of the random variables \(X_1, \ldots, X_n \) is not known. However it is known that \(F(t_1, \ldots, t_n) \) is an element of a given class \(\Omega \) of distribution functions. Consider a system \(S \) of subsets of \(\Omega \) and for each element \(\omega \) of \(S \) let \(H_\omega \) denote the hypothesis that the joint distribution function of \(X_1, \ldots, X_n \) is an element of \(\omega \). Furthermore, denote by \(H_S \) the system of all hypotheses \(H_\omega \) corresponding to all elements \(\omega \) of \(S \). Let \(E = (x_1, \ldots, x_n) \) denote an observation on \(X \), i.e., \(x_i \) denotes an observed value of \(X_i \) (\(i = 1, 2, \ldots, n \)). The totality of all possible observations \(E \) on \(X \) is the \(n \)-dimensional Cartesian space and is called the sample space. Any point of the sample space is called a sample point. The problem
Why This Guarantee?

\[
\mathbb{E}_{x \sim \mathcal{D}} \left[\max_{x' \in P(x)} \text{loss}(x', \theta) \right]
\]
Why This Guarantee?

\[
\mathbb{E}_{x \sim \mathcal{D}} \left[\max_{x' \in P(x)} \text{loss}(x', \theta) \right]
\]

If a classifier satisfies this property, we avoid \textbf{arms races}.

JSMA \rightarrow **Defensive Distillation** \rightarrow **Tuned JSMA**

[Papernot et al. ‘15], [Papernot et al. ‘16], [Carlini et al. ‘17]

FGSM \rightarrow **Feature Squeezing, Ensembles** \rightarrow **Tuned Lagrange**

[Goodfellow et al. ‘15], [Abbasi et al. ‘17], [Xu et al. ‘17]; [He et al. ‘17]
How Can We Get There?

\[
\mathbb{E}_{x \sim D} \left[\max_{x' \in P(x)} \text{loss}(x', \theta) \right]
\]
How Can We Get There?

$$
\mathbb{E}_{x \sim \mathcal{D}} \left[\max_{x' \in P(x)} \text{loss}(x', \theta) \right]
$$

Standard image classifiers do not satisfy this property.
How Can We Get There?

\[
\mathbb{E}_{x \sim \mathcal{D}} \left[\max_{x' \in P(x)} \text{loss}(x', \theta) \right]
\]

Standard image classifiers do not satisfy this property.
Robust Optimization

Main problem:

$$\min_{\theta} \mathbb{E}_{x \sim \mathcal{D}} \left[\max_{x' \in P(x)} \text{loss}(x', \theta) \right]$$

[Madry, Makelov, Schmidt, Tsipras, Vladu, 2017]
Robust Optimization

Main problem:

$$\min_{\theta} \mathbb{E}_{x \sim D} \left[\max_{x' \in P(x)} \text{loss}(x', \theta) \right]$$

[Madry, Makelov, Schmidt, Tsipras, Vladu, 2017]
Robust Optimization

Main problem:

\[
\min_{\theta} \mathbb{E}_{x \sim D} \left[\max_{x' \in P(x)} \text{loss}(x', \theta) \right]
\]

Convert to empirical risk:

\[
\min_{\theta} \sum_{i=1}^{n} \max_{x' \in P(x_i)} \text{loss}(x', \theta)
\]

[Madry, Makelov, Schmidt, Tsipras, Vladu, 2017]
Robust Optimization

Main problem:

$$\min_{\theta} \mathbb{E}_{x \sim D} \left[\max_{x' \in P(x)} \text{loss}(x', \theta) \right]$$

Convert to empirical risk:

$$\min_{\theta} \sum_{i=1}^{n} \max_{x' \in P(x_i)} \text{loss}(x', \theta)$$

min part: run SGD

[Madry, Makelov, Schmidt, Tsipras, Vladu, 2017]
Robust Optimization

Main problem:

\[
\min_{\theta} \mathbb{E}_{\mathcal{D}} \left[\max_{\mathcal{P}(x)} \text{loss}(x', \theta) \right]
\]

Convert to empirical risk:

\[
\min_{\theta} \sum_{i=1}^{n} \max_{\mathcal{P}(x_i)} \text{loss}(x', \theta)
\]

How do we get gradients for the inner max?

min part: run SGD

[Madry, Makelov, Schmidt, Tsipras, Vladu, 2017]
Good Gradients = Good Attacks

Danskin’s Theorem
Simplified, but holds for non-convex losses: Let

\[\phi_x(\theta) = \max_{x' \in P(x)} \text{loss}(x', \theta) \]

and let \(x^*_\theta \) be a constrained maximizer of \(\text{loss}(\cdot, \theta) \). Then

\[\nabla \phi_x(\theta) = \nabla_\theta \text{loss}(x^*_\theta, \theta) \]
Good Gradients = Good Attacks

Danskin’s Theorem

Simplified, but holds for **non-convex** losses: Let

\[
\phi_x(\theta) = \max_{x' \in P(x)} \text{loss}(x', \theta)
\]

and let \(x^*_\theta\) be a constrained maximizer of \(\text{loss}(\cdot, \theta)\). Then

\[
\nabla \phi_x(\theta) = \nabla_\theta \text{loss}(x^*_\theta, \theta)
\]

Overall algorithm: **adversarial training**.

→ Principled approach for

\[
\min_\theta \mathbb{E}_{x \sim \mathcal{D}} \left[\max_{x' \in P(x)} \text{loss}(x', \theta) \right]
\]
Good Gradients = Good Attacks

Danskin’s Theorem
Simplified, but holds for non-convex losses: Let

$$\phi_x(\theta) = \max_{x' \in P(x)} \text{loss}(x', \theta)$$

and let x^*_θ be a constrained maximizer of $\text{loss}(\cdot, \theta)$. Then

$$\nabla \phi_x(\theta) = \nabla_\theta \text{loss}(x^*_\theta, \theta)$$

Overall algorithm: adversarial training.

→ Principled approach for $\min_{\theta} \mathbb{E}_{x \sim D} \left[\max_{x' \in P(x)} \text{loss}(x', \theta) \right]$

Crucial point: need to find the best possible attack.
Is There Any Hope?

Non-concave maximization problem.

FGSM (single gradient)
PGD (100 steps with \(\eta = 0.3 \))
Transfer FGSM
Transfer PGD
Is There Any Hope?

Non-concave maximization problem.

Explains failure of FGSM

FGSM (single gradient)
P GD (100 steps with $\eta=0.3$)
Transfer FGSM
Transfer PGD
Many local maxima, but loss values concentrate.
Results: Robust Classifiers?

Results

MNIST (eps = 0.3): 90% accuracy vs white-box
93% accuracy vs black-box

CIFAR10 (eps = 8): 46% accuracy vs white-box
63% accuracy vs black-box
Results: Robust Classifiers?

Results

MNIST (eps = 0.3): 90% accuracy vs white-box
93% accuracy vs black-box

CIFAR10 (eps = 8): 46% accuracy vs white-box
63% accuracy vs black-box

Public challenges since June (see github).

Top black-box attacks
92.8% “Generating Adversarial Examples with Adversarial Networks”
93.5% PGD against three copies of the network (Florian Tramer)
What About CIFAR10?
What About CIFAR10?

Optimization succeeds, but the model **overfits** on CIFAR10: 100% train **adv.** accuracy, but only 48% on test.
Robust Generalization

Does robustness require more data?

Theorem (informal): There is a distribution over points in \mathbb{R}^d with the following property: Learning a ℓ_∞ robust linear classifier for this distribution requires \sqrt{d} more samples than learning a non-robust classifier.
Conclusions

- Robust generalization is a prerequisite for secure ML.

- Adversarial training (a.k.a. robust optimization) with strong enough attacks is a principled defense.

- Optimization is only half of the picture: We need to take care of adversarially robust generalization too.
Questions

• What robustness guarantees should ML-based systems provide?
• Are there trade-offs between robust and standard generalization?
• What compromises in mathematical rigor are acceptable?
• How can we verify ML-based systems?