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Have we really achieved human-level performance?
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Translations + rotations
(shifts by <10% pixels, <30° rotations)

CIFAR10: 93% — 8% accuracy

ImageNet: 76% — 31% accuracy
[Engstrom, Tsipras, Schmidt, Madry, 2017]
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“Standard” Generalization

i [loss(x,6) ]
x~D

Adversarially Robust Generalization

T | max loss(z’,6)

r~D | 2’ €P(x) )
Perturbation set: rotations, translations,

small /., perturbations, ...

What is the right
set of perturbations? | This talk: assume the set P Is given.
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1. Introduction

In some previous publications (see [1] and the last chapter in [2]) the author
outlined a theory of statistical inference which deals with the following general
problem: Let X = (X,;, ---, X,) be a set of random variables and suppose
that the joint cumulative distribution function F(¢;, -- -, ¢,) of the random
variables X;, - -+, X, 1s not known. However it is known that F(t;, --- , {,)
is an element of a given class @ of distribution functions. Consider a system S
of subsets of © and for each element w of S let H, denote the hypothesis that
the joint distribution function of X, , - -+, X, is an element of w. Furthermore,
denote by Hjs the system of all hypotheses H, corresponding to all elements
wof S. let E = (2,, ---, x,) denote an observation on X, i.e., z; denotes an
observed value of X; (z = 1, 2, -+, n). The totality of all possible observa-
tions £ on X is the n-dimensional Cartesian space and is called the sample
space. Any point of the sample space is called a sample point. The problem
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Why This Guarantee?

T | max loss(z’,6)
r~D | v’ €P(x)

If a classifier satisfies this property, we avoid arms races.

JSMA — Defensive Distillation — Tuned JSMA

FGSM — Feature Squeezing, Ensembles — Tuned Lagrange
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How Can We Get There?

T | max loss(z’,6)
r~D | v’ €P(x)

Standard image classifiers do not satisfy this property.

How does robustness affect optimization
and sample complexity”’
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Main problem:

min E | max loss(x’, )
0 z~D | v'€P(x)

[Madry, Makelov, Schmidt, Tsipras, Vladu, 2017/]
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Robust Optimization
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Convert to empirical risk:
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min max loss(z’, )
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Robust Optimization

Main problem:

min E | max loss(x’, )
0 z~D | v'€P(x)

Robust Optimization
». <k

aaaaaaaaaaaaa
Laurent El Ghaoui
Arkadi Nemirovski

Convert to empirical risk:

n

min max loss(z’, )
9 —1 x’GP(xi)

T

min part;
run SGD

[Madry, Makelov, Schmidt, Tsipras, Vladu, 2017/]



Robust Optimization

Main problem:

min E | max loss(x’, )
0 z~D | v'€P(x)

Robust Optimization

aaaaaaaaaaaaa
Laurent El Ghaoui
Arkadi Nemirovski

Convert to empirical risk:

n

min max loss(z’, )
0 — x'eP(x;)

e

min part: How do we get gradients for the inner max?
run SGD

[Madry, Makelov, Schmidt, Tsipras, Vladu, 2017/]
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Good Gradients = Good Attacks

Danskin’s Theorem
Simplified, but holds for non-convex losses: Let

»(0) = max loss(z’,0
60(6) = max loss(z’.0

and let xy be a constrained maximizer of loss(-, ) . Then
Vo.(0) = Vgloss(zy, o)

Overall algorithm: adversarial training.

— Principled approach for min E mg?)loss(x’,ﬁ)
z~D | ' €P(x

Crucial point: need to find the best possible attack.
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s There Any Hope?

Non-concave maximization problem.

100 A
80 A
60 A

40 A

20 /%

0.0 0.2 0.4 0.6 0.8 1.0

Explains failure of FGSM

FGSM (single gradient)
PGD (100 steps with n=0.3)
Transfer FGSM

Transfer PGD
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Explore loss surface with randomly restarted PGD (100Kk trials):
MNIST

log(frequency)
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Many local maxima, but loss values concentrate.
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Results: Robust Classifiers?

Results

MNIST (eps = 0.3): 90% accuracy vs white-box
93% accuracy vs black-box

CIFAR10 (eps = 8): 46% accuracy vs white-box
63% accuracy vs black-box

Public challenges since June (see github).

Top black-box attacks =
92.8% “Generating Adversarial Examples with Adversarial
Networks”

93.5% PGD against three copies of the network (Florian Tramer)
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Optimization succeeds, but the model overfits on CIFAR10:
100% train adv. accuracy, but only 48% on test.




Robust Generalization

DOeSs robustness require more data”?

Theorem (informal): There is a distri
with the following property: Learn

oution over points in Rd

iNng a £ robust linear

classifier for this distribution requires v'd more samples
than learning a non-robust classifier.




Conclusions

® Robust generalization is a prerequisite for secure ML.

® Adversarial training (a.k.a. robust optimization) with strong
enough attacks is a principled defense.

® Optimization is only half of the picture: We need to take care
of adversarially robust generalization too

T Slgn(VmJ(07 m’ y)) CSign(VmJ(ey m? y))
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Questions

What robustness guarantees should ML-based systems provide?
Are there trade-offs between robust and standard generalization
What compromises in mathematical rigor are acceptable”

How can we verity ML-based systems?



