Privacy-preserving Mechanisms for Correlated Data

Kamalika Chaudhuri University of California, San Diego

Joint work with Shuang Song and Yizhen Wang

Sensitive Data

Medical Records

Search Logs

Google

Social Networks

Talk Agenda:

How do we analyze sensitive data while still preserving privacy?

(Focus on correlated data)

Correlated Data

User information in social networks

Physical Activity Monitoring

Why is Privacy Hard for Correlated Data?

Because neighbor's information leaks information on user

Talk Agenda:

- I. Privacy for Correlated Data
 - How to define privacy (for uncorrelated data)

Differential Privacy [DMNS06]

Participation of a single person does not change output

Differential Privacy: Attacker's View

Note: a. Algorithm could draw personal conclusions about Alice

b. Alice has the **agency** to participate or not

What happens with correlated data?

Goal: Share aggregate data on physical activity with doctor, while hiding activity at each specific time. Agency is at the individual level.

Example 2: Spread of Flu in Network

Goal: Publish aggregate statistics over a set of schools, prevent adversary from knowing who has flu. Agency at school level.

Why does Correlated data require a different notion of privacy?

 $D = (x_1, ..., x_T), x_t = activity at time t$

Goal: (1) Publish activity histogram (2) Prevent adversary from knowing activity at t

 $D = (x_1, ..., x_T), x_t = activity at time t$

Goal: (1) Publish activity histogram (2) Prevent adversary from knowing activity at t

Agency is at individual level, not time entry level

 $D = (x_1, ..., x_T), x_t = activity at time t$

I-DP: Output histogram of activities + noise with stdev T Too much noise - no utility!

 $D = (x_1, ..., x_T), x_t = activity at time t$

I-entry-DP: Output histogram of activities + noise with stdev I

Not enough - activities across time are correlated!

 $D = (x_1, ..., x_T), x_t = activity at time t$

I-Entry-Group DP: Output histogram of activities + noise with stdev T

Too much noise - no utility!

Secret Set S

S: Information to be protected e.g: Alice's age is 25, Bob has a disease

Q: Pairs of secrets we want to be indistinguishablee.g: (Alice's age is 25, Alice's age is 40)(Bob is in dataset, Bob is not in dataset)

Θ: A set of distributions that plausibly generate the data
 e.g: (connection graph G, disease transmits w.p [0.1, 0.5])
 (Markov Chain with transition matrix in set P)

May be used to model correlation in data

An algorithm A is ϵ -Pufferfish private with parameters (S, Q, Θ) if for all $(\mathbf{s}_i, \mathbf{s}_j)$ in Q, for all $\theta \in \Theta$, $X \sim \theta$, all t, $p_{\theta,A}(A(X) = t|s_i, \theta) \leq e^{\epsilon} \cdot p_{\theta,A}(A(X) = t|s_j, \theta)$ whenever $P(s_i|\theta), P(s_j|\theta) > 0$ t $p(A(X)|s_i, \theta)$ $p(A(X)|s_j, \theta)$

Pufferfish "Includes" DP [KMI2]

Theorem: Pufferfish = Differential Privacy when:

 $S = \{ s_{i,a} := Person i has value a, for all i, all a in domain X \}$

 $Q = \{ (s_{i,a} \ s_{i,b}), \text{ for all } i \text{ and } (a, b) \text{ pairs in } X \times X \}$

 $\Theta = \{ \text{ Distributions where each person i is independent } \}$

Pufferfish "Includes" DP [KMI2]

Theorem: Pufferfish = Differential Privacy when:

- $S = \{ s_{i,a} := Person i has value a, for all i, all a in domain X \}$
- $Q = \{ (s_{i,a} \ s_{i,b}), \text{ for all } i \text{ and } (a, b) \text{ pairs in } X \times X \}$
- $\Theta = \{ \text{ Distributions where each person i is independent } \}$

Theorem: No utility possible when:

 $\Theta = \{ All possible distributions \}$

Talk Agenda:

- I. Privacy for Correlated Data
 - How to define privacy (for uncorrelated data)
 - How to define privacy (for correlated data)
- 2. Privacy Mechanisms
 - A General Pufferfish Mechanism

How to get Pufferfish privacy?

Special case mechanisms [KMI2, HMDI2]

Is there a more general Pufferfish mechanism for a large class of correlated data?

Our work: Yes, two - a. Wasserstein Mechanism b. Markov Quilt Mechanism

(Also concurrent work [GKI6])

Correlation Measure: Bayesian Networks

Node: variable

Directed Acyclic Graph

Joint distribution of variables:

$$\Pr(X_1, X_2, \dots, X_n) = \prod_i \Pr(X_i | \text{parents}(X_i))$$

A Simple Example

Model:

 X_i in {0, 1}

State Transition Probabilities:

A Simple Example

Model:

 $X_i \text{ in } \{0, \, I\}$

State Transition Probabilities:

 $Pr(X_2 = 0 | X_1 = 0) = p$ $Pr(X_2 = 0 | X_1 = 1) = 1 - p$

A Simple Example

Model:

 $X_i \text{ in } \{0, \, I \}$

State Transition Probabilities:

 $Pr(X_2 = 0 | X_1 = 0) = p$ $Pr(X_2 = 0 | X_1 = 1) = 1 - p$

$$\Pr(X_{i} = 0 | X_{I} = 0) = \frac{1}{2} + \frac{1}{2}(2p - 1)^{i-1}$$
$$\Pr(X_{i} = 0 | X_{I} = 1) = \frac{1}{2} - \frac{1}{2}(2p - 1)^{i-1}$$

Influence of X_1 diminishes with distance

Algorithm: Main Idea

Goal: Protect X₁

Algorithm: Main Idea

Local nodes (high correlation)

Rest (almost independent)

Goal: Protect X_I

Algorithm: Main Idea

$$(X_1 \rightarrow X_2 \rightarrow X_3)$$

Local nodes (high correlation)

Rest (almost independent)

Goal: Protect X_I

Add noise to hide + Small correction local nodes + for rest

Measuring "Independence"

Max-influence of X_i on a set of nodes X_R :

$$e(X_R|X_i) = \max_{a,b} \sup_{\theta \in \Theta} \max_{x_R} \log \frac{\Pr(X_R = x_R | X_i = a, \theta)}{\Pr(X_R = x_R | X_i = b, \theta)}$$

Low $e(X_R|X_i)$ means X_R is almost independent of X_i

To protect X_i , correction term needed for X_R is $exp(e(X_R|X_i))$

How to find large "almost independent" sets

Brute force search is expensive

Use structural properties of the Bayesian network

Markov Blanket

Markov Blanket(X_i) = Set of nodes X_s s.t Xi is independent of X\($X_i U X_s$) given X_s

(usually, parents, children, other parents of children)

Define: Markov Quilt

 X_Q is a Markov Quilt of X_i if: I. Deleting X_Q breaks graph into X_N and X_R 2. X_i lies in X_N 3. Y_P is independent of Y_i

3. X_R is independent of X_i given X_Q

(For Markov Blanket $X_N = X_i$)

Recall: Algorithm

Local nodes (high correlation)

Rest (almost independent)

Goal: Protect X_I

Add noise to hide + Small correction local nodes + for rest

Why do we need Markov Quilts?

Given a Markov Quilt, $X_N = \text{local nodes for } X_i$ $X_Q \cup X_R = \text{rest}$

Why do we need Markov Quilts?

Given a Markov Quilt, $X_N = local nodes for X_i$ $X_Q \cup X_R = rest$

Need to search over Markov Quilts X_Q to find the one which needs optimal amount of noise

From Markov Quilts to Amount of Noise

Let X_Q = Markov Quilt for X_i Stdev of noise to protect X_i :

Noise due to X_N

Score(X_Q) =
$$\frac{card(X_N)}{\epsilon - e(X_Q|X_i)}$$

 $Correction \ for \ X_Q \ U \ X_R$

The Markov Quilt Mechanism

For each X_i

Find the Markov Quilt X_Q for X_i with minimum score s_i

Output F(D) + (max_i s_i) Z where $Z \sim Lap(1)$

The Markov Quilt Mechanism

For each X_i

Find the Markov Quilt X_Q for X_i with minimum score s_i

Output F(D) + (max_i s_i) Z where $Z \sim Lap(1)$

Theorem: This preserves ϵ -Pufferfish privacy **Advantage:** Poly-time in special cases.

$D = (x_1, ..., x_T), x_t = activity at time t$

(Minimal) Markov Quilts for X_i have form $\{X_{i-a}, X_{i+b}\}$ Efficiently searchable

- \mathcal{X} : set of states
- P_{θ} : transition matrix describing each $\theta \in \Theta$

- \mathcal{X} : set of states
- P_{θ} : transition matrix describing each $\theta \in \Theta$

Under some assumptions, relevant parameters are:

 $\pi_{\Theta} = \min_{\substack{x \in \mathcal{X}, \theta \in \Theta}} \pi_{\theta}(x) \quad \text{(min prob of x under stationary distr.)}$ $g_{\Theta} = \min_{\theta \in \Theta} \min\{1 - |\lambda| : P_{\theta}x = \lambda x, \lambda < 1\} \text{ (min eigengap of any } P_{\theta}\text{)}$

- \mathcal{X} : set of states
- P_{θ} : transition matrix describing each $\theta \in \Theta$

Under some assumptions, relevant parameters are:

 $\pi_{\Theta} = \min_{\substack{x \in \mathcal{X}, \theta \in \Theta}} \pi_{\theta}(x) \quad \text{(min prob of x under stationary distr.)}$ $g_{\Theta} = \min_{\theta \in \Theta} \min\{1 - |\lambda| : P_{\theta}x = \lambda x, \lambda < 1\} \text{ (min eigengap of any } P_{\theta}\text{)}$

Max-influence of $X_Q = \{X_{i-a}, X_{i+b}\}$ for X_i $e(X_Q | X_i) \le \log\left(\frac{\pi_{\Theta} + \exp(-g_{\Theta}b)}{2}\right) + 2\log\left(\frac{\pi_{\Theta} + \exp(-g_{\Theta}a)}{2}\right)$

$$Score(X_Q|X_i) \leq \log \left(\pi_{\Theta} - \exp(-g_{\Theta}b) \right)^{-1/2} \log \left(\pi_{\Theta} - \exp(-g_{\Theta}a) \right)$$
$$\frac{a + b - 1}{\epsilon - e(X_Q|X_i)}$$

Markov Quilt Mechanism for Activity Monitoring

For each X_i Find Markov Quilt X_Q = {X_{i-a},X_{i+b}} with minimum score s_i Output F(D) + (max_i s_i) Z where $Z \sim Lap(1)$

Running Time: O(T³) (can be made O(T²))
Advantage I: Consistency
Advantage 2: Composition (for chains)

Experiments

Simulations - Task

Model:

 X_i in {0, 1}

State Transition Probabilities:

Model Class: $\Theta = [\ell, 1 - \ell]$

(implies p and q can lie anywhere in Θ)

Sequence length = 100

Simulations - Results

Methods:

Two versions of Markov Quilt Mechanism (MQMExact, MQMApprox)

_ GK16

Real Data - Activity Measurement

Dataset on physical activity by three groups of subjects: 40 cyclists, 16 older women and 36 overweight women 4 states (active, standing still, standing moving, sedentary)

Over 9,000 observations per subject

 $\Theta = \{ \text{ Empirical data generating distribution } \}$

Methods:

MQMExact and MQMApprox

GroupDP

GK16 does not apply

Real Data - Activity Measurement

Real Data - Power Consumption

Dataset on power consumption in a single household Power consumption discretized to 51 levels (51 states) Over 1 million observations

 $\Theta = \{ \text{ Empirical data generating distribution } \}$

Methods:

MQMExact vs. MQMApprox GK16 does not apply GroupDP has too little utility

Real Data - Power Consumption

Methods:

Two versions of Markov Quilt Mechanism (MQMExact, MQMApprox)

Conclusion

Problem:

privacy of correlated data - time series, social networks

Contributions:

Two new mechanisms - a fully general mechanism, and a more efficient mechanism

Established composition of the Markov Quilt Mechanism

Future Work:

More efficient mechanisms, more detailed composition properties

Acknowledgements

Shuang Song

Mani Srivastava

Yizhen Wang

Questions?