
JPEG-resistant Adversarial Images

Richard Shin
Computer Science Division

University of California, Berkeley
ricshin@cs.berkeley.edu

Dawn Song
Computer Science Division

University of California, Berkeley
dawnsong@cs.berkeley.edu

Abstract

Several papers have explored the use of JPEG compression as a defense against
adversarial images [3, 2, 5]. In this work, we show that we can generate adversarial
images which survive JPEG compression, by including a differentiable approxima-
tion to JPEG in the target model. By ensembling multiple target models employing
varying levels of compression, we generate adversarial images with up to 691×
greater success rate than the baseline method on a model using JPEG as defense.

1 Introduction

Image classification models has been a highly-studied domain for adversarial examples. While
adversarial images generated against these models are nevertheless very close to the original image
according to L∞ or L2 norm, unnatural high-frequency components or random-looking dot patterns
are sometimes noticeable. As such, some proposed defenses to adversarial examples involve an initial
input transformation step which attempts to remove such unnatural-looking additions.

In particular, several papers [3, 2, 5] have proposed and evaluated JPEG compression as a potential
method for preventing adversarial images. To summarize, they compress and then decompress an
image using JPEG before providing it to the image classification model. Since JPEG is a lossy image
compression method designed to preferentially preserve details important to the human visual system,
the hope is that JPEG compression will keep the aspects of the image important for classification,
but discard any adversarial perturbations. The method is appealingly simple and, according to the
previous work, can reduce the attack success rate of adversarial examples.

However, these previous works did not consider an adaptive adversary that can change the adversarial
example generation method to counteract this defense. Previous work [6] has shown that adaptive
adversaries can defeat other input transformation-based defenses, such as median filtering and bit
depth reduction. Can an adaptive adversary also defeat the JPEG compression defense? Our answer is
yes. While JPEG compression is not differentiable, we show how to closely approximate it using only
differentiable operations. Afterwards, we can use existing adversarial example generation methods
against the combination of differentiable JPEG compression and the original image classification
model. Our empirical results using the ImageNet dataset show that we can generate adversarial
examples which attack a model with JPEG compression just as well as a plain model. Furthermore,
by attacking an ensemble of models where each applies a different level of JPEG compression, we
can ensure that the resulting adversarial examples can successfully fool classification models using
the JPEG defense at a variety of settings, or no JPEG defense at all.

2 Preliminaries

Consider an image x ∈ [0, 1]H×W×C and an image classifer C(x) ∈ ∆K where ∆ is the prob-
ability simplex and K is the number of classes. A non-targeted adversarial example x′ satisfies
arg maxk C(x)k 6= arg maxk C(x′)k and ‖x′ − x‖ is small, for some distance metric ‖ · ‖.

Given a loss function `(·, ·), we attempt to find x′ by solving arg maxx′ `(C(x), C(x′)) s.t.‖x′−x‖ <
d. In this work, we used two methods for approximating a solution this optimization problem:

• Fast gradient sign method [4]: x′ = x+ ε · sign(∇x′ [`(C(x), C(x′))]x′=x). This method
ensures that ‖x′ − x‖∞ = ε.

• Iterative FGSM [7]: x(i+1) = x(i) + ε
N · sign(∇x′ [`(C(x), C(x′))]x′=x(i)), for all i =

0, · · · , N − 1. x = x(0) and x′ = x(N). This is equivalent to the fast gradient sign method
run for N iterations.

After each update, we apply clipping to [0, 1] to ensure that the image remains within bounds. If the
true class y is known for a given image x, we can instead solve arg maxx′ `(1y, C(x′)) s.t.‖x′−x‖ <
d, where 1y ∈ RK is a one-hot vector with the yth element set to 1. We use this variant for our
experiments.

We also consider a targeted attack, satisfying arg maxk C(x′)k = y′ and ‖x′ − x‖ is small, by
optimizing arg minx′`(1y′ , C(x′)) s.t.‖x′ − x‖ < d where y′ is the target class. For compactness,
the remainder of the exposition assumes a non-targeted attack.

3 JPEG compression

JPEG compression first converts the image into a luma-chroma color space (YCbCr), downsampling
the chroma channels, transforming each 8x8 block with a two-dimensional discrete cosine transform,
and then quantizing of each block. Afterwards, lossless compression techniques are used on this
output, but they are not relevant for our purposes. In this section, we describe how to perform
each step using differentiable operations, straightforward to implement in common libraries like
TensorFlow [1].

Color space conversion. While digital images are most commonly displayed using the RGB color
space, JPEG uses the YCbCr color space. The conversion is an affine transformation y = Mx+ b,
where x ∈ R3 is a color in RGB, y ∈ R3 is in YCbCr, and M ∈ R3×3, b ∈ R3 are coefficients given
in the appendix.

Chroma subsampling. In the YCbCr color space, the Y component represents the overall bright-
ness (luminance) of the pixel, whereas Cb and Cr encode the color (chrominance) separate from the
brightness. As humans can discern finer detail in brightness versus color, JPEG downsamples the Cb
and Cr channels by a factor of two in each dimension. We achieve this by using 2x2 average pooling
with a stride of 2.

Block splitting. The subsequent parts of the compression method deal with 8x8 blocks in each
channel. Due to the chroma subsampling, note that the blocks for Cb and Cr correspond to 16x16
blocks in the original image, which is why we needed padding to the next multiple of 16.

Discrete cosine transform. Let us represent a 8x8 block represented as matrix B ∈ R8×8 into a
64-dimensional vector, such that v8i+j = Bi,j (0 ≤ i, j ≤ 7). Then we can implement the discrete
cosine transformation as w = A � Gv where A ∈ R64 is a scaling factor, � is the Hadamard
(element-wise) product, and G ∈ R64×64 contains the DCT coefficients, which are shown in the
appendix. Afterward, we rearrange the DCT output w ∈ R64 into C ∈ R8×8, where Ci,j = w8i+j

(0 ≤ i, j ≤ 7). The top left corner of C (i = 0, j = 0) contains the lowest-frequency component of
the original 8x8 block, while the bottom right corner (i = 7, j = 7) contains the highest-frequency
component.

Quantization. Other than the chroma subsampling step, the other steps above are lossless transfor-
mations if performed with sufficient precision. Their purpose is to enable the quantization step to
efficiently discard a large amount of data while preserving as much as possible the appearance of the
image to the human eye.

In JPEG, we use a quantization matrix Q ∈ 8 × 8 to create Di,j =
⌊
Ci,j

Qi,j

⌉
, where b·e represents

rounding to the nearest integer. The design of Q reflects characteristics of the human visual system:

2

the values of Q in the bottom right are larger than in the top left, so as to preferentially discard
the high-frequency components. Using larger values for Q results in greater compression, as after
quantization, more entries of D become 0.

Differentiable approximation to rounding. b·e has derivative 0 nearly everywhere, which is
not compatible with the gradient-based methods used for generating adversarial examples. We
instead used the approximation bxeapprox = bxe + (x − bxe)3, which has non-zero derivatives
nearly everywhere, and close to bxe (maximum discrepancy occurs at n+ 0.5 for integers n, where
bn+ 0.5eapprox − bn+ 0.5e = 0.125).

Decoding. Recovering an RGB image involves performing the inverse of the above steps in reverse
order. Element-wise multiplication with Q (lossily) reverses quantization; the inverse discrete cosine
transform is a similar linear operation with different coefficients; conversion from YCbCr to RGB is
also an affine transformation.

4 Creating JPEG-resistant adversarial images

Originally, we classify each image x by using the classifier C(x). Instead, the JPEG-based defense
uses C(JPEG(x, q)), where JPEG(x, q) compresses x using quality level q (an integer between 0
and 100) and then decompresses the result to produce a slightly transformed version of x. The premise
is that for an adversarial example x′ created from x, even if arg maxk C(x)k 6= arg maxk C(x′)k,
then arg maxk C(JPEG(x, q))k = arg maxk C(JPEG(x′, q))k for some suitable q.

To attack this defense, we will use JPEGdiff(x, q), a differentiable approximation
to JPEG described in Section 3. In other words, our optimization problem is
arg maxx′ `(C(x), C(JPEGdiff(x

′, q))) s.t.‖x′ − x‖ < d. This requires evaluating the gradient
∇x′ [`(C(x), C(JPEGdiff(x

′, q)))] which is straightforward to do using common libraries like Ten-
sorFlow.

However, we found that using this gradient could result in adversarial examples which are overly
specialized to the quality level used. To ensure that we can generate robust adversarial examples, we
also tried using an ensemble of models employing different q, also including a model without any
JPEG compression.

Our ensemble weights the gradients computed from each model based on the relative magnitude
of the losses. Given various quality levels qi, and setting Li = `(C(x), C(JPEGdiff(x

′, qi))), we
use the gradient

∑n
i=1

(
1− exp(Li)∑

i exp(Li)

)
∇x′ [Li] for the untargeted attack. Intuitively, when a given

value of Li is smaller, we place a larger weight on ∇x′ [Li] for the combined gradient, in order to
increase Li by a greater amount.

5 Experimental results

For our experiments, we used a pretrained ResNet-50 model1 and the first 1000 images of the ILSVRC
2012 object recognition validation set. We resized all images to 224× 224 without preserving the
aspect ratio and used single-crop evaluation. We used 25, 50, and 75 as the quality value q in JPEG
compression; in the ensemble for the gradient, we also include a model with no JPEG compression
(so the ensemble contains 4 different models). For evaluating the JPEG defense, we used the JPEG
encoder and decoder provided by TensorFlow; for attacking the JPEG defense, we implemented
JPEGdiff as described in Section 3. For consistency, all models reduce their input to 8 bits, by
truncating down to a multiple of 1/255. For targeted attacks, we used y′ = (y + 500) mod 1000 as
the target class. Table 1 shows our main results. We explain their implications in this section.

JPEG compression on benign images. JPEG compression may cause the system to misclassify
benign inputs, as reported by Guo et al [5]. Row 1 of Table 1 shows that at the fairly low quality level
of q = 25, the accuracy goes down by 10 percentage points.

1Obtained from https://github.com/tensorflow/models/tree/master/research/slim

3

https://github.com/tensorflow/models/tree/master/research/slim

Result on eval. with model

U/T Attack method Model for ∇ Mean L2 Mean L∞ q =∞ q = 75 q = 50 q = 25

1 None N/A 0 0 70.7% 66.3% 64.7% 60.2%

2
U FGSM, ε = 1

255

q =∞ 1.51 1/255 12.2% 36.8% 45.8% 51.6%
3 q = 25 1.51 1/255 59.9% 51.6% 45.3% 22.5%
4 ensemble 1.51 1/255 20.9% 27.8% 31.5% 31.1%

5 U FGSM, ε = 3
255

q =∞ 4.51 3/255 4.8% 14.6% 23.1% 35.4%
6 ensemble 4.51 3/255 9.2% 10.1% 10.1% 15.0%

7 U FGSM, ε = 9
255

q =∞ 13.44 9/255 5.9% 8.8% 11.3% 16.9%
8 ensemble 13.44 9/255 4.5% 5.0% 5.6% 7.9%

9
U I-FGSM, ε = 1

255

q =∞ 1.00 1/255 1.6% 34.6% 47.4% 52.0%
10 q = 25 0.97 1/255 62.2% 51.8% 46.6% 12.9%
11 ensemble 1.02 1/255 9.1% 18.0% 23.6% 27.9%

12
U I-FGSM, ε = 3

255

q =∞ 2.24 3/255 0.2% 9.5% 30.4% 44.2%
13 q = 50 2.13 3/255 23.3% 6.5% 0.6% 45.9%
14 ensemble 2.42 3/255 1.0% 1.1% 4.6% 10.6%

15
T I-FGSM, ε = 7

255

q =∞ 3.89 7/255 0.992 0.096 0.008 0.001
16 q = 25 4.11 7/255 0.013 0.033 0.142 0.645
17 ensemble 4.41 7/255 0.972 0.905 0.842 0.691

18
T I-FGSM, ε = 9

255

q =∞ 4.75 9/255 0.983 0.255 0.018 0.003
19 q = 75 4.82 9/255 0.723 0.946 0.060 0.007
20 ensemble 5.33 9/255 0.985 0.963 0.934 0.829

Table 1: Summary of results; please refer to body for explanation. U/T indicates untar-
geted/targeted. For U, % is the adversarial input’s accuracy (lower number is a better attack).
For T, fraction is success rate (higher number is a better attack). q =∞ indicates no JPEG defense.
I-FGSM uses N = 10 iterations.

Untargeted FGSM. In row 3, using gradients from a model including JPEGdiff(x, 25) reduces
accuracy to 22.5%, from 51.6% in the unadaptive attack (row 2). However, the attack does not
generalize to a JPEG-less model (q =∞), with 59.9% accuracy. Ensembling gradients (row 4) leads
to an attack with greater success for q =∞, 75, 50, but with modest declines for q = 25. With larger
ε (rows 5-8), the attacks are more successful, but the defense is also weaker (e.g., 16.9% accuracy for
q = 25 defense in row 7).

Untargeted I-FGSM. Comparing row 9 to row 2, I-FGSM attacking q = ∞ is more successful
against an undefended model (1.6% vs 12.2%). However, results against q = 75, 50, 25 remain
similar. In row 10, the q = 25 attack again fails to generalize to other q values used as defense;
similarly for q = 50 with ε = 3/255 in row 13. Comparing row 11 to row 4 and row 14 to row 6,
I-FGSM with the ensemble performs better than FGSM.

Targeted I-FGSM. For a targeted attack to succeed, the resulting image must be classified as
a specific class out of 1000. This is more difficult than the untargeted attack (where any of 999
classes suffices). Indeed, we see in row 15 that the unadaptive attack is 99.2% successful against the
undefended model, but only 0.1% successful with q = 25 defense (for targeted, higher numbers are
better). However, the adaptive attack against the ensemble fares much better: against q = 25 defense,
the success rate rises to 69.1% and 89.2% on rows 17 and 20; hence at ε = 7/255, our success rate
is 691× greater. Attacks against only one q do not transfer well; on row 16, the q = 25 attack
only succeeds 1.3% on the undefended model (q =∞ column), and on row 19, the q = 75 attack
succeeds 6% on the q = 50 defense and 0.7% on the q = 25 defense.

6 Conclusion

In this paper, we showed how to defeat the JPEG defense by performing an adaptive attack with
a differentiable JPEG approximation. By ensembling target models that use varying amounts of
compression, our adversarial examples generalize to models with and without this defense.

4

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.

Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. Software available from tensorflow.org.

[2] Nilaksh Das, Madhuri Shanbhogue, Shang-Tse Chen, Fred Hohman, Li Chen, Michael E.
Kounavis, and Duen Horng Chau. Keeping the bad guys out: Protecting and vaccinating deep
learning with jpeg compression, 2017.

[3] Gintare Karolina Dziugaite, Zoubin Ghahramani, and Daniel M. Roy. A study of the effect of
jpg compression on adversarial images, 2016.

[4] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

[5] Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens van der Maaten. Countering adversar-
ial images using input transformations, 2017.

[6] Warren He, James Wei, Xinyun Chen, Nicholas Carlini, and Dawn Song. Adversarial example
defenses: Ensembles of weak defenses are not strong. arXiv preprint arXiv:1706.04701, 2017.

[7] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. arXiv
preprint arXiv:1611.01236, 2016.

A JPEG compression details

RGB to YCbCr.[
Y
Cb
Cr

]
=

[
0.299 0.587 0.114

−0.168736 −0.331264 0.5
0.5 −0.418688 −0.081312

][
R
G
B

]
+

[
0

128
128

]
where all values are in [0, 255].

Discrete cosine transform. We expressed the 2D discrete cosine transform over 8x8 blocks, used
in JPEG, as w = A�Gv.

G ∈ R64×64

G8u+v,8x+y = cos

(
(2x+ 1)uπ

16

)
cos

(
(2y + 1)vπ

16

)
x, y, u, v ∈ [0, 7]

A ∈ R64

A8u+v =
1

4
α(u)α(v) u, v ∈ [0, 7]

α(u) =

{
1√
2

if u = 0

0 otherwise

Quantization matrix. For the luminance channel (Y), we use the following quantization matrix Q:

QY = s ·



16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 10
72 92 95 98 112 100 103 99



T

5

For the chrominance channels (Cb and Cr):

QC = s ·



17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99



T

s is a scalar determined from the quality level q:

s =

{
50
q if q < 50

2− 2q
100 otherwise

6

	Introduction
	Preliminaries
	JPEG compression
	Creating JPEG-resistant adversarial images
	Experimental results
	Conclusion
	JPEG compression details

