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Abstract—Although deep neural networks (DNNs) have
achieved great success in many tasks, recent studies have shown
they are vulnerable to adversarial examples. Such examples,
typically generated by adding small but purposeful distortions,
can frequently fool DNN models. Previous studies to defend
against adversarial examples mostly focused on refining the
DNN models, but have either shown limited success or suffered
from expensive computation. We propose a new strategy, feature
squeezing, that can be used to harden DNN models by detecting
adversarial examples. Feature squeezing reduces the search space
available to an adversary by coalescing samples that correspond
to many different feature vectors in the original space into a single
sample. By comparing a DNN model’s prediction on the original
input with that on squeezed inputs, feature squeezing detects
adversarial examples with high accuracy and few false positives.
This paper explores two types of feature squeezing: reducing
the color bit depth of each pixel and spatial smoothing. These
strategies are inexpensive and complementary to other defenses,
and can be combined in a joint detection framework to achieve
high detection rates against state-of-the-art attacks.

I. INTRODUCTION

Deep Neural Networks (DNNs) perform exceptionally
well on many artificial intelligence tasks, including security-
sensitive applications like malware classification [26], [8] and
face recognition [35]. Unlike when machine learning is used
in other fields, security applications involve intelligent and
adaptive adversaries responding to the deployed systems. Re-
cent studies have shown that attackers can force deep learning
object classification models to mis-classify images by making
imperceptible modifications to pixel values. The maliciously
generated inputs are called “adversarial examples” [10], [39]
and are normally crafted using an optimization procedure to
search for small, but effective, artificial perturbations.

The goal of this work is to harden DNN systems against
adversarial examples by detecting them successfully. Detecting
an attempted attack may be as important as predicting correct
outputs. When running locally, a classifier that can detect
adversarial inputs may alert its users or take fail-safe actions
(e.g., a fully autonomous drone returns to its base) when it
spots adversarial inputs. For an on-line classifier whose model
is being used (and possibly updated) through API calls from
external clients, the ability to detect adversarial examples may
enable the operator to identify malicious clients and exclude
their inputs. Another reason that detecting adversarial exam-
ples is important is because even with the strongest defenses,
adversaries will occasionally be able to get lucky and find an
adversarial input. For asymmetrical security applications like
malware detection, the adversary may only need to find a single
example that preserves the desired malicious behavior but is
classified as benign to launch a successful attack. This seems
like a hopeless situation for an on-line classifier operator, but

the game changes if the operator can detect even unsuccessful
attempts during an adversary’s search process.

Most of the previous work aiming to harden DNN sys-
tems, including like adversarial training and gradient masking
(details in Section II-C), focused on modifying the DNN
models themselves. In contrast, our work focuses on finding
simple and low-cost defensive strategies that alter the input
samples but leave the model unchanged. A few other recent
studies have proposed methods to detect adversarial examples
through sample statistics, training a detector, or prediction
inconsistency (Section II-D). Our approach, which we call
feature squeezing, is driven by the observation that the feature
input spaces are often unnecessarily large, and this vast input
space provides extensive opportunities for an adversary to
construct adversarial examples. Our strategy is to reduce the
degrees of freedom available to an adversary by “squeezing”
out unnecessary input features.

The key to our approach is to compare the model’s predic-
tion on the original sample with its prediction on the sample
after squeezing, as depicted in Figure 1. If the original and
squeezed inputs produce substantially different outputs from
the model, the input is likely to be adversarial. By comparing
the difference between predictions with a selected threshold
value, our system outputs the correct prediction for legitimate
examples and rejects adversarial inputs.

The approach generalizes to other domains where deep
learning is used, such as voice recognition and natural language
processing. Carlini et al. have demonstrated that lowering the
sampling rate helps to defend against the adversarial voice
commands [4]. Hosseini et al. proposed to perform spell
checking on the inputs of a character-based toxic text detection
system to defend against the adversarial examples [16]. Both
of them could be regard as an instance of feature squeezing.

Although feature squeezing generalizes to other domains,
here we focus on image classification because it is the domain
where adversarial examples have been most extensively stud-
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Fig. 1: Detecting adversarial examples. The model is evaluated on
both the original input and the input after being pre-processed by one or more
feature squeezers. If any of the predictions on the squeezed inputs are too
different from the original prediction, the input is determined to be adversarial.



ied. We explore two simple methods for squeezing features of
images: reducing the color depth of each pixel in an image,
and using spatial smoothing to reduce the differences among
individual pixels. We demonstrate that feature squeezing sig-
nificantly enhances the robustness of a model by predicting
correct labels of adversarial examples, while preserving the
accuracy on legitimate inputs (Section IV), thus enabling an
accurate detector for adversarial examples (Section V). Feature
squeezing appears to be both more accurate and general, and
less expensive, than previous methods.

Contributions. Our key contribution is introducing and evalu-
ating feature squeezing as a technique for detecting adversarial
examples. We introduce the general detection framework (de-
picted in Figure 1), and show how it can be instantiated to
accurately detect adversarial examples generated by a wide
range of state-of-the-art methods.

We study two instances of feature squeezing: reducing
color bit depth (Section III-A) and both local and non-local
spatial smoothing (Section III-B). We report on experiments
that show feature squeezing helps DNN models predict correct
classification on adversarial examples generated by eleven
different and state-of-the-art attacks (Section IV).

Section V explains how we use feature squeezing for de-
tecting adversarial inputs in two distinct situations. In the first
case, we (overly-optimistically) assume the model operator
knows the attack type and can select a single squeezer for
detection. Our results show that the effectiveness of different
squeezers against various attacks varies. For instance, the 1-
bit depth reduction squeezer achieves a perfect 100% detection
rate on MNIST for six different attacks. However, this squeezer
is not as effective against those attacks making substantial
changes to a small number of pixels (that can be detected
well by median smoothing). The model operator normally does
not know what attacks an adversary may use, so requires a
detection system to work well against any attack. We propose
combining multiple squeezers in a joint detection framework.
Our experiments show that joint-detection can successfully
detect adversarial examples from eleven state-of-the-art attacks
at the detection rates of 98% on MNIST and 85% on CIFAR-
10 and ImageNet, with low (below 5%) false positive rates.

Feature squeezing is complementary to other adversarial
defenses since it does not change the underlying model, and
can readily be composed with other defenses such as adver-
sarial training (Section IV-E). Although we cannot guarantee
an adaptive attacker cannot succeed against a particular feature
squeezing configuration, our results show it is effective against
state-of-the-art methods, and it considerably complicates the
task of an adaptive adversary even with full knowledge of the
model and defense (Section V-D).

II. BACKGROUND

This section provides a brief introduction to neural
networks, methods for finding adversarial examples, and
previously-proposed defenses.

A. Neural Networks

Deep Neural Networks (DNN5s) can efficiently learn highly-
accurate models from large corpora of training samples in

many domains [19], [13], [26]. Convolutional Neural Networks
(CNNs), first popularized by LeCun et al. [21], perform
exceptionally well on image classification. A deep CNN can
be written as a function g : X — Y, where X represents the
input space and Y is the output space representing a categorical
set. For a sample, x € X,

g(x) = fr(fr-1(... ((ix))).

Each f; represents a layer, which can be a classical feed-
forward linear layer, rectification layer, max-pooling layer, or
a convolutional layer that performs a sliding window operation
across all positions in an input sample. The last output layer,
f1, learns the mapping from a hidden space to the output space
(class labels) through a softmax function.

A training set contains N, labeled inputs in which the
i-th input is denoted (x;,y;). When training a deep model,
parameters related to each layer are randomly initialized, and
input samples (X;, y;) are fed through the network. The output
of this network is a prediction g(x;) associated with the i-th
sample. To train the DNN, the difference between prediction
output, g(x;), and its true label, y;, is fed back into the
network using a back-propagation algorithm to update DNN
parameters.

B. Generating Adversarial Examples

An adversarial example is an input crafted by an adversary
with the goal of producing an incorrect output from a target
classifier. Since ground truth, at least for image classification
tasks, is based on human perception which is hard to model
or test, research in adversarial examples typically defines an
adversarial example as a misclassified sample x’ generated by
perturbing a correctly-classified sample x (a.k.a seed example)
by some limited amount.

Adversarial examples can be targeted, in which case the
adversary’s goal is for X’ to be classified as a particular class
t, or untargeted, in which case the adversary’s goal is just for
x’ to be classified as any class other than its correct class.
More formally, given x € X and g(-), the goal of an targeted
adversary with target # € Y is to find an x’ € X such that

gx)=tAAKX,X) <€ ¢))

where A(x,x’) represents the difference between input x and
x’. An untargeted adversary’s goal is to find an X’ € X such
that

gx) £ g(x) ANAX, X)) < €. 2)

The strength of the adversary, €, measures the permissible
transformations. The distance metric, A(), and the adversarial
strength threshold, €, are meant to model how close an
adversarial example x’ needs to be to the original sample x
to “fool” a human observer.

Several techniques have been proposed to find adversar-
ial examples. Szegedy et al. [39] first observed that DNN
models are vulnerable to adversarial perturbation and used
the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) algorithm to find adversarial examples. Their study also
found that adversarial perturbations generated from one DNN
model can also force other DNN models to produce incorrect
outputs. Subsequent papers have explored other strategies to
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Fig. 2: Image examples with bit depth reduction. The first
column shows images from MNIST, CIFAR-10 and Ima-
geNet, respectively. Other columns show squeezed versions
at different color-bit depths, ranging from 8 (original) to 1.

generate adversarial manipulations, including using the linear
assumption behind a model [10], [28], saliency maps [32], and
evolutionary algorithms [29].

Equations (1) and (2) suggest two different parameters
for categorizing methods for finding adversarial examples:
whether they are targeted or untargeted, and the choice of A(),
which is typically an L,-norm distance metric. When given a
m-dimensional vector z = X — X’ = (21,22, ...,2m). € R”, the
L, norm is defined by:

lzll, = § > el (3)
i=1

The three norms used as A() choices for popular adversarial
methods are:

o L.: ||zllo = max |z]|. The L, norm measures the maximum

1
change in any dimension. This means an L, attack is limited
by the maximum change it can make to each pixel, but can
alter all the pixels in the image by up to that amount.

o Ly |zll, = Zzlz The L, norm corresponds to the Eu-

clidean distance between x and x’. This distance can remain
small when many small changes are applied to many pixels.

o Ly: ||zllo = #{i|z; # 0}. For images, this metric measures the
number of pixels that have been altered between x and x’,
so an Ly attack is limited by the number of pixels it can
alter.

We discuss the eleven attacking algorithms, grouped by the
norm they used for A, used in our experiments further below.

1) Fast Gradient Sign Method: FGSM (L., Untargeted)

Goodfellow et al. hypothesized that DNNs are vulnerable
to adversarial perturbations because of their linear nature [10].
They proposed the fast gradient sign method (FGSM) for
efficiently finding adversarial examples. To control the cost
of attacking, FGSM assumes that the attack strength at every
feature dimension is the same, essentially measuring the pertur-
bation A(x, x") using the L.,-norm. The strength of perturbation
at every dimension is limited by the same constant parameter,
€, which is also used as the amount of perturbation.
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Fig. 3: Examples of adversarial attacks and feature squeezing
methods extracted from the MNIST dataset. The first column
shows the original image and its squeezed versions, while the
other columns present the adversarial variants. All targeted
attacks are targeted-next.
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As an untargeted attack, the perturbation is calculated
directly by using gradient vector of a loss function:

Ax,x") = € - sign(VxJ(8(X), )) “

Here the loss function, J(:,-), is the loss that have been used
in training the specific DNN model, and y is the correct label
for x. Equation (4) essentially increases the loss J(-,:) by
perturbing the input x based on a transformed gradient.

2) Basic Iterative Method: BIM (L., Untargeted)

Kurakin et al. extended the FGSM method by applying it
multiple times with small step size [20]. This method clips
pixel values of intermediate results after each step to ensure
that they are in an e-neighborhood of the original image x. For
the m-th iteration,

X1 = X, + Clipy fa - sign(ViJ(g(x;,), y)} (&)

The clipping equation, Clip, (z), performs per-pixel clipping
on z so the result will be in the L. e-neighborhood of the
source x [20].

3) DeepFool (L,, Untargeted)

Moosavi et al. used a L, minimization-based formulation,
termed DeepFool, to search for adversarial examples [28]:

A(x,X") := arg ming||zl|», subject to: g(x + z) # g(x) (6)

DeepFool searches for the minimal perturbation to fool a clas-
sifier and uses concepts from geometry to direct the search. For
linear classifiers (whose decision boundaries are linear planes),
the region of the space describing a classifier’s output can
be represented by a polyhedron (whose plane faces are those
boundary planes defined by the classifier). Then DeepFool
searches within this polyhedron for the minimal perturbation
that can change the classifiers decision. For general non-
linear classifiers, this algorithm uses an iterative linearization
procedure to get an approximated polyhedron.

4) Jacobian Saliency Map Approach: JSMA (L, Targeted)

Papernot et al. [32] proposed the Jacobian-based saliency
map approach (JSMA) to search for adversarial examples
by only modifying a limited number of input pixels in an
image. As a targeted attack, JSMA iteratively perturbs pixels



in an input image that have high adversarial saliency scores.
The adversarial saliency map is calculated from the Jacobian
(gradient) matrix Vxg(x) of the DNN model g(x) at the current
input x. The (c, p)" component in Jacobian matrix Vyg(x)
describes the derivative of output class ¢ with respect to
feature pixel p. The adversarial saliency score of each pixel
is calculated to reflect how this pixel will increase the output
score of the target class ¢ versus changing the score of all
other possible output classes. The process is repeated until
classification into the target class is achieved, or it reaches
the maximum number of perturbed pixels. Essentially, JSMA
optimizes Equation (2) by measuring perturbation A(x,X’)
through the Ly-norm.

5) Carlini/Wagner Attacks (L, L. and Ly, Targeted)

Carlini and Wagner recently introduced three new gradient-
based attack algorithms that are more effective than all
previously-known methods in terms of the adversarial success
rates achieved with minimal perturbation amounts [6]. There
are versions of their attacks for L,, L., and Ly norms.

The CW, attack formalizes the task of generating adver-
sarial examples as an optimization problem with two terms as
usual: the prediction term and the distance term. However, it
makes the optimization problem easier to solve with several
techniques. The first is using the logits-based objective func-
tion instead of the softmax-cross-entropy loss that is commonly
used in other optimization-based attacks. This makes it robust
against the defensive distillation method [34]. The second is
converting the target variable to the argtanh space to bypass
the box-constraint on the input, making it more flexible in
taking advantage of modern optimization solvers, such as
Adam. It also uses a binary search algorithm to select a
suitable coefficient that performs a good trade-off between the
prediction and the distance terms. These improvements enable
the CW, attack to find adversarial examples with smaller
perturbations than previous attacks.

Their CW,, attack recognizes the fact that L., norm is hard
to optimize and only the maximum term is penalized. Thus,
it revises the objective into limiting perturbations to be less
than a threshold 7 (initially 1, decreasing in each iteration).
The optimization reduces 7 iteratively until no solution can
be found. Consequently, the resulting solution has all the
perturbations smaller than the specified .

The basic idea of the CW attack is to iteratively use CW,
to find the least important features and freeze them (so value
will never be changed) until the L, attack fails with too many
features being frozen. As a result, only those features with
significant impact on the prediction are changed. This is the
opposite of JSMA, which iteratively selects the most important
features and performs large perturbations until it successfully
fools the target classifier.

C. Defensive Techniques

Papernot et al. [33] provide a comprehensive summary of
work on defending against adversarial samples, grouping work
into two broad categories: adversarial training and gradient
masking, which we discuss further below. A third approach is
to modify feature sets, but it has not previously been applied to
DNN models. Wang et al. proposed a theory that unnecessary

features are the primary cause of a classifier’s vulnerability to
adversarial examples [41]. Zhang et al. proposed an adversary-
aware feature selection model that can improve classifier
robustness against evasion attacks [43]. Our proposed feature
squeezing method is broadly part of this theme.

Adversarial Training. Adversarial training introduces dis-
covered adversarial examples and the corresponding ground
truth labels to the training dataset [10], [39]. Ideally, the
model will learn how to restore the ground truth from the
adversarial perturbations and perform robustly on the future
adversarial examples. This technique, however, suffers from
the high cost to generate adversarial examples and (at least)
doubles the training cost of DNN models due to its iterative
re-training procedure. Its effectiveness also depends on having
a technique for efficiently generating adversarial examples
similar to the one used by the adversary, which may not be
the case in practice. As pointed out by Papernot et al. [33],
it is essential to include adversarial examples produced by
all known attacks in adversarial training, since this defensive
training is non-adaptive. But, it is computationally expensive
to find adversarial inputs by most known techniques, and there
is no way to be confident the adversary is limited to techniques
that are known to the trainer.

Gradient Masking. These defenses seek to reduce the sensi-
tivity of DNN models to small changes made to their sample
inputs, by forcing the model to produce near-zero gradients. Gu
et al. proposed adding a gradient penalty term in the objective
function, which is defined as the summation of the layer-by-
layer Frobenius norm of the Jacobian matrix [12]. Although
the trained model behaves more robustly against adversaries,
the penalty significantly reduces the capacity of the model
and sacrifices accuracy on many tasks [33]. Papernot et al.
introduced defensive distillation to harden DNN models [34].
A defensively distilled model is trained with the smoothed
labels generated by a normally-trained DNN model. Then,
to hide model’s gradient information from an adversary, the
distilled model replaces its last layer with a “harder” softmax
function after training. Experimental results found that larger
perturbations are required when using JSMA to evade dis-
tilled models. However, two subsequent studies showed that
defensive distillation failed to mitigate a variant of JSMA
with a division trick [5] and a black-box attack [31]. Papernot
et al. concluded that methods designed to conceal gradient
information are bound to have limited success because of the
transferability of adversarial examples [33].

D. Detecting Adversarial Examples

A few recent studies [25], [11], [9] have focused on
detecting adversarial examples. The strategies they explored
can be considered into three groups: sample statistics, training
a detector and prediction inconsistency.

Sample Statistics. Grosse et al. [11] propose a statistical test
method for detecting adversarial examples using maximum
mean discrepancy and energy distance as the statistical distance
measures. Their method requires a large set of adversarial ex-
amples and legitimate samples and is not capable of detecting
individual adversarial examples, making it less useful in prac-
tice. Feinman et al. propose detecting adversarial examples us-



ing kernel density estimation [9], which measures the distance
between an unknown input example and a group of legitimate
examples in a manifold space (represented as features in some
middle layers of a DNN). It is computationally expensive
and can only detect adversarial examples lying far from the
manifolds of the legitimate population. Using sample statistics
to differentiate between adversarial examples and legitimate
inputs seems unlikely to be effective against broad classes
of attacks due to the intrinsically deceptive nature of such
examples. Experimental results from both Grosse et al. [11]
and Feinman et al. [9] have found that strategies relying on
sample statistics gave inferior detection performance compared
to other strategies.

Training a Detector. Similar to adversarial training, adversar-
ial examples can also be used to train a detector. Because of the
large number of adversarial examples needed, this method is
expensive and prone to overfitting employed adversarial tech-
niques. Metzen et al. proposed attaching a CNN-based detector
as a branch off a middle layer of the original DNN [25]. The
detector outputs two classes and uses adversarial examples (as
one class) plus legitimate examples (as the other class) for
training. The detector is trained while freezing the weights of
the original DNN, so does not sacrifice classification accuracy
on the legitimate inputs. Grosse et al. demonstrate a similar
detection method (previously proposed by Nguyen et al. [29])
that adds a new “adversarial” class in the last layer of the DNN
model [11]. The revised model is trained with both legitimate
and adversarial inputs, reducing the accuracy on legitimate
inputs due to the change to the model architecture.

Prediction Inconsistency. The basic idea of prediction incon-
sistency is to measure the disagreement among several models
in predicting an unknown input example, since one adversarial
example may not fool every DNN model. Feinman et al.
borrowed an idea from dropout [15] and designed a detection
technique they called Bayesian neural network uncertainty [9].
In its original form, a dropout layer randomly drops some
weights (by temporarily setting to zero) in each training
iteration and uses all weights at the testing phase, which
can be interpreted as training many different sub-models and
averaging their predictions in testing. For detecting adversarial
examples, Feinman et al. propose using the “training” mode
of dropout layers to generate many predictions of each input.
They reported that the disagreement among the predictions
of sub-models is rare on legitimate inputs but common on
adversarial examples, thus can be employed for detection.

III. FEATURE SQUEEZING METHODS

Although the notion of feature squeezing is quite general,
we focus on two simple types of squeezing: reducing the
color depth of images (Section III-A), and using smoothing
(both local and non-local) to reduce the variation among
pixels (Section III-B). Section IV looks at the impact of each
squeezing method on classifier accuracy and robustness against
adversarial inputs. These results enable feature squeezing to be
used for detecting adversarial examples in Section V.

A. Color Depth

A neural network, as a differentiable model, assumes that
the input space is continuous. However, digital computers only

support discrete representations as approximations of contin-
uous natural data. A standard digital image is represented by
an array of pixels, each of which is usually represented as a
number that represents a specific color.

Common image representations use color bit depths that
lead to irrelevant features, so we hypothesize that reducing
bit depth can reduce adversarial opportunity without harming
classifier accuracy. Two common representations, which we
focus on here because of their use in our test datasets, are 8-
bit grayscale and 24-bit color. A grayscale image provides 28 =
256 possible values for each pixel. An 8-bit value represents
the intensity of a pixel where O is black, 255 is white, and
intermediate numbers represent different shades of gray. The 8-
bit scale can be extended to display color images with separate
red, green and blue color channels. This provides 24 bits for
each pixel, representing 2>* ~ 16 million different colors.

1) Squeezing Color Bits

While people usually prefer larger bit depth as it makes the
displayed image closer to the natural image, large color depths
are often not necessary for interpreting images (for example,
people have no problem recognizing most black-and-white
images). We investigate the bit depth squeezing with three
popular datasets for image classification: MNIST, CIFAR-10
and ImageNet.

Greyscale Images (MNIST). The MNIST dataset contains
70,000 images of hand-written digits (0 to 9). Of these, 60,000
images are used as training data and the remaining 10,000
images are used for testing. Each image is 28 x 28 pixels, and
each pixel is encoded as 8-bit grayscale.

Figure 2 shows one example of class 0 in the MNIST
dataset in the first row, with the original 8-bit grayscale
images in the leftmost and the 1-bit monochrome images
rightmost. The rightmost images, generated by applying a
binary filter with 0.5 as the cutoff, appear nearly identical to
the original images on the far left. The processed images are
still recognizable to humans, even though the feature space is
only 1/128™ the size of the original 8-bit grayscale space.

Figure 3 hints at why reducing color depth can mitigate
adversarial examples generated by multiple attack techniques.
The top row shows one original example of class 1 from the
MNIST test set and six different adversarial examples. The
middle row shows those examples after reducing the bit depth
of each pixel into binary. To a human eye, the binary-filtered
images look more like the correct class; in our experiments,
we find this is true for DNN classifiers also (Table III in
Section 1IV).

Color Images (CIFAR-10 and ImageNet). We use two
datasets of color images in this paper: the CIFAR-10 dataset
with tiny images and the ImageNet dataset with high-resolution
photographs. The CIFAR-10 dataset contains 60,000 images,
each with 32 x 32 pixels encoded with 24-bit color and
belonging to 10 different classes. The ImageNet dataset is pro-
vided by ImageNet Large Scale Visual Recognition Challenge
2012 for the classification task, which contains 1.2 million
training images and the other 50,000 images for validation.
The photographs in the ImageNet dataset are in different sizes
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Fig. 4: Examples of adversarial attacks and feature squeezing methods extracted from the CIFAR-10 and ImageNet datasets. The
first row presents the original image and its squeezed versions, while the other rows presents the adversarial variants.

and hand-labeled with 1,000 classes. However, they are pre-
processed to 224x224 pixels encoded with 24-bit True Color
for the target model MobileNet [17], [24] we use in this paper.

The middle row and the bottom row of Figure 2 show that
we can reduce the original 8-bit (per RGB channel) images to
fewer bits without significantly decreasing the image recogniz-
ability to humans. It is difficult to tell the difference between
the original images with 8-bit per channel color and images
using as few as 4 bits of color depth. Unlike what we observed
in the MNIST datase, however, bit depths lower than 4 do
introduce some human-observable loss. This is because we
lose much more information in the color image even though we
reduce to the same number of bits per channel. For example, if
we reduce the bits-per-channel from 8 bits to 1 bit, the resulting
grayscale space is 1/128 large as the original; the resulting
RGB space is only 27?3 = 1/2,097, 152 of the original
size. Nevertheless, in Section IV-B we find that squeezing to
4 bits is strong enough to mitigate a lot of adversarial examples
while preserving the accuracy on legitimate examples.

2) Implementation

We implement the bit depth reduction operation in Python
with the NumPy library. The input and output are in the same
numerical scale [0, 1] so that we don’t need to change anything
of the target models. For reducing to i-bit depth (1 <i < 7),
we first multiply the input value with 2'—1 (minus 1 due to the
zero value) then round to integers. Next we scale the integers
back to [0, 1], divided by 2/ — 1. The information capacity
of the representation is reduced from 8-bit to i-bit with the
integer-rounding operation.

B. Spatial Smoothing

Spatial smoothing (also known as blur) is a group of
techniques widely used in image processing for reducing image
noise. Next, we describe the two types of spatial smoothing
methods we used: local smoothing and non-local smoothing.

1) Local Smoothing

Local smoothing methods make use of the nearby pixels
to smooth each pixel. By selecting different mechanisms in
weighting the neighbouring pixels, a local smoothing method
can be designed as Gaussian smoothing, mean smoothing or
the median smoothing method [42] we use. As we report
in Section IV-C, median smoothing (also known as median
blur or median filter) is particularly effective in mitigating
adversarial examples generated by Ly attacks.

The median filter runs a sliding window over each pixel of
the image, where the center pixel is replaced by the median
value of the neighboring pixels within the window. It does
not actually reduce the number of pixels in the image, but
spreads pixel values across nearby pixels. The median filter
is essentially squeezing features out of the sample by making
adjacent pixels more similar.

The size of the window is a configurable parameter, ranging
from 1 up to the image size. If it were set to the image
size, it would (modulo edge effects) flatten the entire image
to one color. A square shape window is often used in me-
dian filtering, though there are other design choices. Several
padding methods can be employed for the pixels on the edge,
since there are no real pixels to fill the window. We choose



reflect padding [36], in which we mirror the image along with
the edge for calculating the median value of a window when
necessary.

Median smoothing is particularly effective at removing
sparsely-occurring black and white pixels in an image (de-
scriptively known as salt-and-pepper noise), whilst preserving
edges of objects well.

Figure 4a presents some examples from CIFAR-10 with
median smoothing of a 2 X 2 window in the third column.
It suggests why local smoothing can effectively mitigate ad-
versarial examples generated by the Jacobian-based saliency
map approach (JSMA) [32] (Section 1I-B4). JISMA identifies
the most influential pixels and modifies their values to a
maximum or minimum. The top left is a seed image of the
class airplane from the CIFAR-10 dataset. The third image in
the first row displays the result of applying a 2x2 median filter
to that image. The last row shows the generated adversarial
example using the targeted JSMA attack in the leftmost, and
the third image illustrates the result of local smoothing of
that adversarial example. As with CIFAR-10, both humans and
machines see the correct image class clearly after smoothing.
We observe the similar effect on the ImageNet dataset with
another Ly attack: CW,, attack in Figure 4b, even though there
are less perturbed pixels.

Implementation. We use the median filter implemented in
SciPy [37]. In a 2%2 sliding window, the center pixel is always
located in the lower right. When there are two equal-median
values due to the even number of pixels in a window, we
(arbitrarily) use the greater value as the median.

2) Non-local Smoothing

Non-local smoothing is different from local smoothing
because it smooths over similar pixels in a much larger area
instead of just nearby pixels. For a given image patch, non-
local smoothing finds several similar patches in a large area
of the image and replaces the center patch with the average of
those similar patches. Assuming that the mean of the noise is
zero, averaging the similar patches will cancel out the noise
while preserving the edges of an object. Similar with local
smoothing, there are several possible ways to weigh the similar
patches in the averaging operation, such as Gaussian, mean,
and median. We use a variant of the Gaussian kernel because
it is widely used and allows to control the deviation from
the mean. The parameters of a non-local smoothing method
typically include the search window size (a large area for
searching similar patches), the patch size and the filter strength
(bandwidth of the Gaussian kernel). We will denote a filter as
“non-local means (a-b-c)” where “a” means the search window
axa, “b” means the patch size b X b and “c” means the filter
strength.

Figure 4 presents some examples with non-local means
(11-3-4). From the first column in Figure 4a, we observe
that the adversarial attacks introduce different patterns in the
sky background. Non-local smoothing (fourth column) is very
effective in restoring the smooth sky while preserving the
shape of the airplane. We observe the similar effect from the
ImageNet examples in Figure 4b.

Implementation. We use the fast non-local means denoising

method implemented in OpenCV. It first converts a color image
to the CIELAB colorspace, then separately denoises its L and
AB components, then converts back to the RGB space.

C. Other Squeezing Methods

Our results in this paper are limited to these simple
squeezing methods, which are surprisingly effective on our test
datasets. However, we believe many other squeezing methods
are possible, and continued experimentation will be worthwhile
to find the most effective squeezing methods.

One possible area to explore includes lossy compression
techniques. Kurakin et al. explored the effectiveness of the
JPEG format in mitigating the adversarial examples [20]. Their
experiment shows that a very low JPEG quality (e.g. 10 out of
100) is able to destruct the adversarial perturbations generated
by FGSM with e=16 (at scale of [0,255]) for at most 30%
of the successful adversarial examples. However, they didn’t
evaluate the potential loss on the accuracy of legitimate inputs.

Another possible direction is dimension reduction. For
example, Turk and Pentland’s early work pointed out that many
pixels are irrelevant features in the face recognition tasks, and
the face images can be projected to a feature space named
eigenfaces [40]. Even though image samples represented in the
eigenface-space loose the spatial information a CNN model
needs, the image restoration through eigenfaces may be a
useful technique to mitigate adversarial perturbations in a face
recognition task.

IV. ROBUSTNESS

The previous section demonstrated that images, as used in
classification tasks, contain many irrelevant features that can be
squeezed without reducing recognizability. For feature squeez-
ing to be effective in detecting adversarial examples (Figure 1),
it must satisfy two properties: (1) on adversarial examples, the
squeezing reverses the effects of the adversarial perturbations;
and (2) on normal legitimate examples, the squeezing does
not significantly impact a classifier’s prediction. This section
evaluates the how well different feature squeezing methods
achieve these properties against various adversarial attacks.

Threat model. In evaluating robustness, we assume a powerful
adversary who has full access to a target trained model, but
no ability to influence that model. The adversary is not aware
of feature squeezing being performed on the operator’s side.
With the goal to find inputs that are misclassified by the model,
the adversary tries to fool the target model with the white-box
attack techniques, whereas the adversarial examples will be
inferred by the model with feature squeezing.

We do not propose using feature squeezing directly as a
defense because an adversary may take advantage of feature
squeezing in attacking a DNN model. For example, when
facing binary squeezing, an adversary can construct an image
by setting all pixel intensity values to be near 0.5. This image
is entirely gray to human eyes. By setting pixel values to either
0.499 or 0.501 it can result in an arbitrary 1-bit filtered image
after squeezing, either entirely white or black. Such an attack
can easily be detected by our detection framework (Section V),
because since the prediction difference between the original
and the squeezed will clearly exceed a normal threshold. In



TABLE I: Summary of the target DNN models.

Dataset Model Top-1 Top-1 Mean Top-5
Accuracy Confidence Accuracy
MNIST 7-Layer CNN [3] 99.43% 99.39% -
CIFAR-10 DenseNet [18], [23] 94.84% 92.15% -
ImageNet MobileNet [17], [24] 68.36% 75.48% 88.25%

more details, we consider how adversaries can adapt to our
detection framework in Section V-D.

A. Experimental Setup

We evaluate our defense on state-of-the-art models for the
three image datasets, against eleven attack variations represent-
ing the best known attacks to date.

Target Models. We use three popular datasets for the image
classification task: MNIST, CIFAR-10, and ImageNet. For
each dataset, we set up a pre-trained model with the state-
of-the-art performance. Table I summarizes the prediction
performance of each model and the information of its DNN
architecture. Our MNIST model (a seven-layer CNN [3])
achieves a test accuracy of 99.43%; our CIFAR-10 model (a
DenseNet [18], [23]) achieves 94.84% test accuracy. The
prediction performance of both models is competitive with
state-of-the-art results [1]. For the ImageNet dataset, we use
a MobileNet model [17], [24] because MobileNet is more
widely used on mobile phones and its small and efficient
design make it easier to conduct experiments. The pre-trained
MobileNet model achieves top-1 accuracy 68.36% and top-
5 accuracy 88.25%, both are comparable to state-of-the-art
results. In contrast, a larger model such as Inception v3 [38],
[7] with six times of trainable parameters could achieve top-1
accuracy 76.28% and top-5 accuracy 93.03%. However, the
calculation on such a model is much more expensive due to
the massive architecture.

Attacks. We evaluate feature squeezing on all of the attacks
described in Section II-C. For the targeted attacks, we try each
attack with two types of targets: the next class (-Next),

t=L+1 mod #classes, @)

and the least-likely class (-LL),
¢ = min (y), 3)

Here t is the target class, L is the index of the ground-
truth class and ¥ is the prediction vector of an input image.
This gives eleven total attacks: the three untargeted attacks
(FGSM, BIM and DeepFool), and two versions each of the
four targeted attacks (JSMA, CW,, CW,, and CW,). We
use the implementations of FGSM, BIM and JSMA provided
by the Cleverhans library [30]. For DeepFool and the three
CW attacks, we use the implementations from the original
authors [3], [27]. The parameters we use for the attacks are
given in Table VI (in the appendix).’

For the seed images, we select the first 100 correctly pre-
dicted examples in the test (or validation) set from each dataset
for all the attack methods, since some attacks are too expensive

L All of our models and codes for attacks, defenses, and testing are available
as an open source tool (https://github.com/mzweilin/EvadeML-Z00).

TABLE II: Evaluation of 11 different attacks (each with 100
seed images) against DNN models on three datasets. The cost of
an attack generating adversarial examples is measured in seconds per sample.
The Lo distortion is normalized by the number of pixels (e.g., 0.56 means
56% of all pixels in the image are modified).

Configration Cost Success | Prediction Distortion
Attack | Mode Rate | Confidence [ L L, Ly
FGSM 0.002 46% | 93.89% | 0.3020 | 5.9047 | .5601
I BIM 0.01 91% | 99.62% | 0.3020 | 4.7580 | .5132
* Tow. [ Next | 5125 100% | 99.99% | 0.2513 | 4.0911 | .4906
» © [TLL | 49.95 100% | 99.98% | 0.2778 | 4.6203 | .5063
21 cw, [Next| 033 99% | 99.23% | 0.6556 | 2.8664 | 4398
§ 2 2 [IL 0.38 100% | 99.99% | 0.7342 | 3.2176 | .4362
Cw. | Next | 6876 100% | 99.99% | 0.9964 | 45378 | .0473
O TLL | 7455 100% | 99.99% | 0.9964 | 5.1064 | .0597
Lo ISMA |_Next | 079 71% | 74.52% | 1.0000 | 4.3276 | .0473
LL 0.98 48% | 74.80% | 1.0000 | 4.5649 | .0535
FGSM 0.02 85% | 84.85% |0.0157 | 0.8626 ] 9974
I BIM 0.19 92% | 95.29% | 0.0078 | 0.3682 | .9932
* [ Tow. [ Next [22532 100% | 98.22% | 0.0122 | 0.4462 | .9896
- ~ [[LL [22438 100% | 97.79% | 0.0143 | 0.5269 | .9947
o DeepFool 0.36 98% | 73.45% | 0.0279 | 0.2346 | .9952
< | L [ow, [Next[ 1036 100% | 97.90% | 0.0340 | 0.2881 | .7677
5 2 [TIL | 1201 100% | 97.35% | 0.0416 | 0.3577 | .8549
Cw. | Next |366.54 100% | 98.19% | 0.6500 | 2.1033 | .0186
0 [TLL [426.05 100% | 97.60% | 0.7121 | 2.5300 | .0241
Lo 1SMA | Next | 844 100% | 43.29% | 0.8960 | 4.9543 | .0790
LL | 13.64 98% | 39.75% | 0.9037 | 5.4883 | .0983
FGSM 0.02 99% | 63.99% | 0.0078 | 3.0089 [ .9941
; [ BIM 0.18 100% | 99.71% | 0.0039 | 1.4059 | .9839
5 |7 Tows [NexU[210.70 99% | 90.33% | 0.0059 | 1.3118 | .8502
2 © [TLL |268.386 99% | 81.42% | 0.0095 | 1.9089 | .9520
& DeepFool 60.16 89% | 79.59% | 0.0269 | 0.7258 | .9839
E | L[ cw, | Next| 2063 90% | 76.25% | 0.0195 | 0.6663 | .3226
2 [TLL | 29.14 97% | 76.03% | 0.0310 | 1.0267 | .5426
Lo | ow, |Next 607.94 100% | 91.78% | 0.8985 | 6.8254 | .0030
O LL [979.05 100% | 80.67% | 0.9200 | 9.0816 | .0053

to run on all the seeds. We adjust the applicable parameters of
each attack to generate high-confidence adversarial examples,
otherwise they would be easily rejected. This is because the
three DNN models we use achieve high confidence of the
top-1 predictions on legitimate examples (see Table I; mean
confidence is over 99% for MNIST, 92% for CIFAR-10, and
75% for ImageNet). In addition, all the pixel values in the
generated adversarial images are clipped and squeezed to 8-
bit-per-channel pixels so that the resulting inputs are within
the possible space of images.

We use a PC equipped with an i7-6850K 3.60GHz CPU
and 64GiB system memory as well as a GeForce GTX 1080
to conduct the experiments.

In Table II, we evaluate the adversarial examples regarding
the success rate, the run-time cost, the prediction confidence
and the distance to the seed image measured by L,, L. and
Ly metrics. The evaluation results for all eleven attacks on
the three datasets are provided. The success rate captures the
probability an adversary achieves their goal. For untargeted
attacks, the success rate is calculated as 1 — accuracy; for
targeted attacks, it is the accuracy for the targeted class.
Table II shows that in general most attacks generate high-
confidence adversarial examples against three DNN models
with a high success rate. The CW attacks often produce fewer
distortions than other attacks using the same norm objective
but are much more expensive to generate. On the other hand,
FGSM, DeepFool, and JSMA often produce low-confidence
adversarial examples. We exclude the DeepFool attack from
the MNIST dataset because it generates images that appear



unrecognizable to human eyes. We do not have JSMA results
for the ImageNet dataset because the available implementation
ran out of memory on our 64GiB test machine.

In Table III we evaluate and compare how different feature
squeezers influence the classification accuracy of DNN models
on three image datasets for all attacks. We discuss experimental
results of each type of squeezers further below.

B. Color Depth Reduction

The resolution of a specific bit depth is defined as the
number of possible values for each pixel. For example, the
resolution of 8-bit color depth is 256. Reducing the bit depth
lowers the resolution and diminishes the opportunity an adver-
sary has to find effective perturbations. Since an adversary’s
goal is to produce small and imperceptible perturbations in the
case of adversarial examples, as the resolution is reduced, such
small perturbations no longer have any impact.

MNIST. The Last column of Table III shows the binary filter
(1-bit depth reduction) barely reduces the accuracy on the
legitimate examples of MNIST (from 99.43% to 99.33% on
the test set). When comparing the model accuracy on the
adversarial examples by the original classifier (the first row
with squeezer None) to the one with the binary filter (the
second row with squeezer bit depth (1-bit)), we see the binary
filter is effective on all the L, and L., attacks. For example,
it improves the accuracy on CW,, adversarial examples from
0% to 100%. Interestingly the binary filter works well even for
large L., distortions. This is because the binary filter squeezes
each pixel into O or 1 using a cutoff 0.5 in the [0, 1) scale. This
means maliciously perturbing a pixel’s value by +0.30 has no
affect on those pixels whose original values fall into [0,.20)
and [.80,1). In contrast, bit depth reduction is not effective
against Ly attacks (JSMA and CWj) since these attacks make
large changes to a few pixels and can not be reversed by the
bit depth squeezer. The next section shows that the spatial
smoothing squeezers are often effective against L attacks.

CIFAR-10 and ImageNet. Because the DNN models for
CIFAR-10 and ImageNet are more sensitive to the adversary,
adversarial examples at very low L, and L., distortions can be
found. Table III includes the results of 4-bit depth and 5-bit
depth filters in mitigating the adversaries for CIFAR-10 and
ImageNet. The 5-bit depth in testing increases the accuracy
on adversarial inputs for several of the attacks (for example,
increasing accuracy from 0% to 40% for the CW; next class
targeted attack), while almost perfectly preserving the accuracy
on legitimate data (94.55% compared with 94.84%). The more
aggressive 4-bit depth filter is more robust against adversaries.
For example, the accuracy on CW, increases to 84%, but it
reduces the accuracy on legitimate inputs from 94.84% to
93.11%. We do not believe these results are good enough
for use as a stand-alone defense (even ignoring the risk of
adversarial adaptation), but they provide some insight why the
method is effective as used in our detection framework.

C. Median Smoothing

The adversarial perturbations produced by the L, attacks
(JSMA and CWy) are similar to salt-and-pepper noise, though
it is introduced intentionally instead of randomly. Note that

the adversarial strength of an L, adversary limits the number
of pixels that can be manipulated, so it is not surprising that
maximizing the amount of change to each modified pixel
is typically most useful to the adversary. This is why the
smoothing squeezers are more effective against these attacks
than the color depth squeezers.

MNIST. We evaluate two window sizes on the MNIST dataset
in Table III. Median smoothing is the best squeezer for all
of the Ly attacks (CW, and JSMA). The median filter with
2 x 2 window size performs slightly worse on adversarial
examples than the one with 3 X 3 window, but it almost
perfectly preserves the performance on the legitimate examples
(decreasing accuracy from 99.43% to 99.28%).

CIFAR-10 and ImageNet. The experiment confirms the intu-
ition suggested by Figure 4a that median smoothing can effec-
tively eliminate the Ly-limited perturbations. Without squeez-
ing, the Ly attacks are effective on CIFAR-10, resulting in 0%
accuracy for the original model ("None” row in Table III).
However, with a 2 x 2 median filter, the accuracy increases to
over 75% for all the four L type attacks. We observe similar
results on ImageNet, where the accuracy increases from 0%
to 85% for the CWy attacks after median smoothing.

D. Non-local Smoothing

The image examples in Figure 4a suggest that non-local
smoothing is inferior to median smoothing in eliminating
the Ly type perturbations, but superior for smoothing the
background and preserving the object edges. This intuition
is confirmed by the experimental results on CIFAR-10 and
ImageNet (because the MNIST images are hand-drawn digits
that are not conducive to finding similar patches, we do not
consider non-local smoothing on MNIST). From Table III we
learn that non-local smoothing has comparable performance in
increasing the accuracy on adversarial examples other than the
Ly type. On the other hand, it has little impact on the accuracy
on legitimate examples. For example, the 2 X 2 median filter
decreases the accuracy on the CIFAR-10 model from 94.84%
to 89.29% while the model with non-local smoothing still
achieves 91.18%. We do not apply the non-local smoothing on
MNIST images because it is difficulty to find similar patches
on such images for smoothing a center patch.

E. Combining with Adversarial Training

Since our approach modifies inputs rather than the model,
it is compatible with any defense technique that operates on the
model. The most successful previous defense against adversar-
ial examples is adversarial training (Section II-C). To evaluate
the effectiveness of composing our feature squeezing method
with adversarial training, we combined it with the adversarial
training implemented by Cleverhans [30]. The objective is to
minimize the mean loss on the legitimate examples and the
adversarial ones generated by FGSM on the fly with € = 0.3.
The model is trained in 100 epochs.

Figure 5 shows that the bit depth reduction by itself
significantly outperforms the adversarial training method on
MNIST in face of the FGSM adversary, but that composing
both methods produces even better results. Used by itself, the
binary filter feature squeezing outperforms adversarial training



TABLE III: Model accuracy with feature squeezing

Squeezer L., Attacks

L, Attacks Ly Attacks

All
Dataset CW,, Deep- CW, CW, JSMA . Legitimate
Name Parameters | FGSM | BIM e r—1 g MNext | TL | Next | L | Next | LL | Attacks
None 54% | 9% | 0% | 0% | - 0% | 0% | 0% | 0% | 27% | 40% | 13.00% 99.43%
MNIST Bit Depth it 92% | 87% | 100% | 100% | - | 83% | 66% | 0% | 0% | 50% | 49% | 62.70% 99.33%
Medion Smoothing X2 61% | 16% | 70% | 55% | - | 51% | 35% | 39% | 36% | 62% | 56% | 48.10% 99.28%
33 9% | 14% | 43% | 46% | - | 51% | 53% | 67% | 59% | 82% | 9% | 55.30% 98.95%
None 5% | 8% | 0% | 0% | 2% 0% 0% ] 0% ] 0% 0% 0% | 227% 94.84%
Bit Depth KR T7% | 13% | 12% | 19% | 40% | 20% | 47% | 0% | 0% | 21% | 17% | 20.55% 94.55%
CIFAR-10 T 2% | 29% | 69% | 74% | T2% | 84% | 84% | 7% | 10% | 23% | 20% | 44.82% 93.11%
Median Smoothing =2 38% | 56% | $4% | 86% | $3% | 87% | 3% | 88% | 85% | 84% | 76% | 71.27% $9.29%
Non-Tocal Means T34 27% | 46% | 80% | 84% | 76% | S4% | 88% | 11% | 11% | 44% | 32% | 53.00% OT.18%
None % | 0% | 0% ] 0% ] 11% ] 10% ] 3% | 0% ] 0% ] - - 2.78% 69.70%
Bit Depth it 3% | 4% | 66% | 9% | 44% | S4% | 82% | 38% | 67% | - T 5201% 68.00%
ImageNet LR 2% | 0% | 33% | 60% | 21% | 68% | 66% | 7% | 18% | - T 30.56% 69.40%
Modion Smoothing X2 3% | 28% | 75% | 81% | 72% | 81% | 84% | 85% | 85% | - T 6811% 65.40%
3x3 33% [41% | 3% | 76% | 66% | 77% | 9% | 81% | 79% | - T 6722% 62.10%
Non-Tocal Means 134 0% | 5% | 77% | 82% | 57% | 87% | 86% | 43% | &7% | - T 5701% 65.40%

No results are shown for DeepFool on MNIST because of the adversarial examples it generates appear unrecognizable to humans; no results
are shown for JSMA on ImageNet because it requires more memory than available to run.
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Fig. 5: Composing adversarial training with feature squeezing.
The horizontal axis is €, so the adversarial strength increases to the right.
By itself, bit depth reduction on the original model outperforms adversarial
training. The adversarial-trained model is fed with the original training
examples as well as those generated by FGSM (e = 0.3) during the 100-
epoch training phase. Composing the 1-bit filter with the adversarial-trained
model performs even better.

for € values ranging from 0.1 to 0.4 2. This is the best case
for adversarial training since the adversarially-trained model
is learning from the same exact adversarial method (retraining
is done with FGSM examples generated at € = 0.3) as the
one used to produce the adversarial examples in the test.
Nevertheless, feature squeezing still outperforms it, even at the
same € = 0.3 value: 94.44% accuracy on adversarial examples
compared to 92.05%.

Feature squeezing is far less expensive than adversarial
training. It is almost cost-free, as we simply insert a binary
filter before the pre-trained MNIST model. On the other
hand, adversarial training is very expensive as it requires both
generating adversarial examples and retraining the classifier
for many epochs.?

2The choice of € is arbitrary, but examples where € > 0.3 are typically not
considered valid adversarial examples [10] since such high € values produce
images that are obviously different from the original images.

3We would like to test retraining with the stronger adversaries, and on
the CIFAR-10 and ImageNet datasets also, but have not been able to do
this experiment as the time to do adversarial training on larger models is
prohibitively expensive.
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When its cost is not prohibitive, though, adversarial training
is still beneficial since it can be combined with feature squeez-
ing. Simply inserting a binary filter before the adversarially-
trained model increases the robustness against an FGSM
adversary. Figure 5 shows that the accuracy on adversarial
inputs with € = 0.3 is 96.37% for the combined model, which
significantly outperforms both standalone approaches: 92.05%
for adversarial training and 94.44% for the bit depth reduction.

V. DETECTING ADVERSARIAL INPUTS

From Section IV we see that feature squeezing is capable
of obtaining accurate model predictions for many adversarial
examples with little reduction in accuracy for legitimate ex-
amples. This enables detection of adversarial inputs using the
framework introduced in Figure 1. The basic idea is to compare
the model’s prediction on the original sample with the same
model’s prediction on the sample after squeezing. The model’s
predictions for a legitimate example and its squeezed version
should be similar. On the contrary, if the original and squeezed
examples result in dramatically different predictions, the input
is likely to be adversarial. Table IV and Figure 6 summarize
the results of our experiments that confirm this intuition for all
three datasets. The following subsections provide more details
on our detection method, experimental setup, and discuss the
results. Section V-D considers how adversaries may adapt to
our defense.

A. Detection Method

A prediction vector generated by a DNN classifier nor-
mally represents the probability distribution how likely an
input sample is to belong to each possible class. Hence,
comparing the model’s original prediction with the prediction
on the squeezed sample involves comparing two probability
distribution vectors. There exist several ways to compare the
probability distributions, such as the L; norm, the L, norm and
K-L divergence [2]. For this work, we select the L; norm*
as a natural measure of the difference between the original

4This turned out to work well, but it is certainly worth exploring in future
work if other metrics can work better.
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(a) MNIST examples.

(b) CIFAR-10 examples.

(c) ImageNet examples.

Fig. 6: Differences in L; distance between original and squeezed sample, for legitimate and adversarial examples across three
datasets. The L; score has a range from 0.0 to 2.0 . Each curve is fitted over 200 histogram bins each representing the L; distance
range of 0.01. Each sample is counted in the bin for the maximum L, distance between the original prediction and the output of
the best joint-detection squeezing configuration shown in Table IV. The curves for adversarial examples are for all adversarial
examples, including unsuccessful ones (so the separation for successful ones is even larger than shown here).

prediction vector and the squeezed prediction:

©)

Here g(x) is the output vector of a DNN model produced by
the softmax layer whose i entry describes the probability how
likely input x is in the i-th class.

score™Xmecd) = ||g(X) — g(Xsqueezea)lli

The L; norm function is defined as |lzl|; = X |z;|. The L,

score has a range from 0 to 2 for the predictioln vectors. A
higher score means there is a greater difference between the
original prediction and the squeezed prediction for an input
X. The maximum value of 2 is reached when each prediction
vector consists of a 1 and all zeros, but with different classes
as the 1. Based on the accuracy results in Section IV, we
expect the score to be small for legitimate inputs and large for
adversarial examples. The effectiveness of detection depends
on selecting a threshold value that accurately distinguishes
between legitimate and adversarial inputs.

Even though we can select an effective feature squeezer
for a specific type of adversarial method, an operator typically
does not know the exact attack method that would be used
in practice. Hence, we combine multiple feature squeezers for
detection by outputting the maximum distance:
score’™

= max (score("’x““), score®*) | ) (10)

We choose the max operator based on an assumption that
there will be a squeezer being effective on one adversarial ex-
ample which generates the highest L; score. On the other hand,
it may increase the false positive rate because the max operator
also selects the most destructive squeezer on legitimate inputs.
We observed that we could usually make a reasonable trade-
off in the empirical results. We may investigate a better way
to combine the squeezers in the future work.

Figure 6 shows the histogram of score/*™ for both legiti-
mate (blue) and adversarial examples (red) on three datasets.
The peak for legitimate examples is always near O, and the
peak for adversarial examples is always near 2. Picking a
threshold value between the two peaks is a balance between
high detection rates and acceptable false positive rates. For
our experiments, we require a false positive rate below 5%
(see Section V-B).

11

B. Experimental Setup

We report on experiments using all attacks from Section IV
with the three types of squeezers in different configurations.

Datasets. To get a balanced dataset for detection, we select
the same number of legitimate examples from the test (or
validation) set of each dataset. For each of the attacks in
Section IV, we use the 100 adversarial examples generated for
each attack in the robustness experiments. This results in 2,000
total examples for MNIST (of which 1,000 are legitimate ex-
amples, and 1,000 are adversarial), 2,200 examples for CIFAR-
10 and 1,800 examples for ImageNet. We randomly split each
detection dataset into two groups: one-half for training the
detector and the remainder for validation. Note that some of
the adversarial examples are failed adversarial examples, that
do not confuse the original model, so the number of successful
adversarial examples varies slightly across the attacks.

Squeezers. We first consider the artificial situation where
the defender knows the attack method, and evaluate how
well each squeezing configuration does against adversarial
examples generated by each attack method. Then, we consider
the realistic scenario where the defender does not know that
attack method used by the adversary and needs to select a
configuration that works well against a distribution of possible
attacks.

Training. The training phase of our detector is simply selecting
an optimal threshold of score/*™. One typical practice is to
find the one that maximizes the training accuracy. However, a
detector with high accuracy could be useless in many security-
sensitive tasks if it had a high false positive rate since the actual
distribution of samples is not balanced and mostly benign.
Therefore, we instead select a threshold that ensures the false
positive rate below 5%, choosing a threshold that is exceeded
by just below 5% of legitimate samples. Note that the training
threshold is set using only the legitimate examples, so does
not depend on the adversarial examples.

Validation. Next, we use the chosen threshold value to
measure the detection rate on three groups: the successful
adversarial examples (SAEs), the failed adversarial examples
(FAEs), and the legitimate examples (for false positive rate).



Except when noted explicitly, “detection rate” means the
detection rate on successful adversarial examples. We think it
is important to distinguish failed adversarial examples from
legitimate examples here since detecting failed adversarial
examples is useful for detecting attacks early, whereas an alarm
on a legitimate example is always undesirable and is counted
as a false positive.

C. Results

First, we discuss the effectiveness of different squeezers
against different attacks. Then, we consider how multiple
squeezers would work in a joint detection framework.

Detection with Single Squeezer. Table IV summarizes the
validation results for detection on each dataset, showing the
detection rates for successful adversarial examples for each
attack method with a variety of configurations. For each
dataset, we first list the detection rate of several detectors
built upon single squeezers. For each squeezing method, we
tried several parameters and compare the performance for
each dataset. The “Best Attack-Specific Single Squeezer” row
gives the detection rate for the best single squeezer against a
particular attack. This represents the (unrealistically optimistic)
case where the model operator knows the attack type and
selects a single squeezer for detection that may be different
for each attack. Below this, we show the best result of joint
detection (to be discussed later) with multiple squeezers where
the same configuration is used for all attacks.

The best bit depth reduction for MNIST is squeezing the
color bits to one, which achieves 100% detection rate for 6
of the attacks and at least 98.9% detection for all the L., and
L, attacks. It is not as effective on the advanced CW, attacks,
however, since these attacks are making large changes to a
small number of pixels. On the contrary, the 3 X 3 median
smoothing is the most effective on detecting the L attacks with
detection rates above 92.00%. This matches the observation
from Table III that they have different strengths for improving
the model accuracy. For MNIST, there is at least one squeezer
that provides good (above 92% detection) results for all of the
attacks.

For CIFAR-10, we find that 2 X 2 median smoothing is
the best single squeezer for detecting every attack except
DeepFool, which is best detected by non-local smoothing.
This is consistent with the robustness results in Table III. For
the ImageNet dataset, we find several different squeezers are
similarly effective on each attack type. For example, the CW,-
LL attack can be 100% detected with several bit depth filters,
the 2 X 2 median smoothing or some non-local mean filters.

The third column in the table gives the distance threshold
setting needed to satisfy the maximum false positive rate of
5%. These threshold values provide some insight into how well
a particular squeezer distinguishes adversarial from legitimate
examples. For the binary filter on MNIST, a tiny threshold
value of 0.0005 was sufficient to produce a false positive rate
below 5%, which means the squeezing has negligible impact
on the legitimate examples: 95% of the legitimate examples
have the L;-based distance score below 0.0005. On the other
hand, the best median smoothing filter (2 X 2) on MNIST
needs a larger threshold value 0.0029 to achieve a similar false

12

positive rate, which means it is slightly more destructive than
the binary filter on the legitimate examples. The more aggres-
sive median smoothing with 3 X 3 window results in an even
higher threshold 0.0390, because the legitimate examples could
get over-squeezed to the target classifier. A lower threshold is
always preferred for detection, which makes it more sensitive
to adversarial examples.

For some of the attacks, none of the feature squeezing
methods work well enough for the color datasets. The worst
cases, surprisingly, are for FGSM and BIM, two of the earlier
adversarial methods. The best single-squeezer-detection only
recognizes 25.88% of the successful FGSM examples and
52.17% of BIM on the CIFAR-10 dataset, while the detection
rates are 44.41% and 59.00% on ImageNet. We suspect the
reason the tested squeezers are less effective against these
attacks is because they make larger perturbations than the
more advanced attacks (especially the CW attacks), and the
feature squeezers we use are well suited to mitigating small
perturbations. Understanding why these detection rates are so
much lower than the others, and developing feature squeezing
methods that work well against these attacks is an important
avenue for future research.

Joint-Detection with Multiple Squeezers. Table V summa-
rizes the overall detection rates for the best joint detectors
against a distribution of all adversarial methods. By comparing
the last two rows of each dataset in Table IV, we see that
joint-detection often outperforms the best detector with a single
squeezer. For example, the best single-squeezer-detection de-
tects 99.00% of the CW,-LL examples while the joint detection
makes it 100%.

The main reason to use multiple squeezers, however, is
because this is necessary to detect unknown attacks. Since the
model operator is unlikely to know what attack adversaries
may use, it is important to be able to set up the detection
system to work well against any attack. For each data set, we
try several combinations of the three squeezers with different
parameters and find out the configuration that has the best
detection results across all the adversarial methods (shown as
the “Best Joint Detection” in Table IV). For MNIST, the best
combination was the 1-bit depth squeezer with 2 X 2 median
smoothing, combining the best parameters for each type of
squeezer. For the color image datasets, different combinations
were found to outperform combining the best squeezers of
each type. For example, the best joint detection configuration
for ImageNet includes the 5-bit depth squeezer, even though
the 3-bit depth squeezer was better as a single squeezer.

Comparing the “Best Attack-Specific Single Squeezer” and
“Best Joint Detection” rows in Table IV reveals that the joint
detection is usually competitive with the best single squeezers
over all the attacks. Since the joint detector needs to maintain
the 5% false positive rate requirement, it has a higher threshold
than the individual squeezers. This means in some cases its
detection rate for a particular attack will be worse than the
best single squeezer achieves. For MNIST, the biggest drop
is for detection rate for CW, (LL) attacks drops from 98%
to 92%; for CIFAR-10, the joint squeezer always outperforms
the best single squeezer; for ImageNet, the detection rate drops
for BIM (59% to 52%), CW, (Next) (93% to 90%), and CW
(Next) (99% to 98%). For simplicity, we use a single threshold



TABLE IV: Detection rate on successful adversarial examples.

Configuration L. Attacks L, Attacks Ly Attacks Overall
Dee] i
Squeezer Parameters Threshold | FGSM BIM Nextcww T Fooll) Next CW, I Next CWo I NextJSMA I Delt:::éon
Bit Depth T-bit* 0.0005 | 100.00% | 98.90% | 100.00% | 100.00% | - | 100.00% | 99.00% | 54.00% | 57.00% | 100.00% | 100.00% | 90.30%
. 2-bit 0.0002 | 6739% | 7.69% | 62.00% | 76.00%| - 93.94% | 90.00% | 40.00% | 41.00% | 98.59% | 100.00% | 65.59%
& [Median Smoothin 2X2F 0.0029 | 73.91% | 26.37% | 100.00% | 100.00% | - 96.97% | 99.00% | 84.00% | 91.00% | 97.18% | 100.00% | 86.84%
E g 3x3 00390 | 47.83% | 12.09% | 80.00% | 83.00% | - 83.84% | 93.00% | 92.00% | 98.00% | 98.59% | 100.00% | 78.06%
Best Aftack-Specific Single Squeezer - 100.00% | 98.90% | 100.00% | 100.00% | - | 100.00% | 99.00% | 92.00% | 98.00% | 100.00% | 100.00% B
Best Joint Detection (I-bit, 2x2) 0.0029 | 100.00% | 98.90% | 100.00% | 100.00% | - | 100.00% | 100.00% | 93.00% | 92.00% | 100.00% | 100.00% | 98.15%
T-bit 1.9997 471%| 870%| 000%| 0.00%| 1.02%] 0.00%] 000%| 000%| 000%| 000%]| 0.00%] 129%
2-bit 1.9967 706% | 15.22% | 1.00% | 0.00% | 0.00%| 1.00%| 0.00% | 0.00%| 1.00%| 000%| 0.00%| 2.22%
Bit Depth 3bit 17822 941% | 30.43% | 78.00% | 97.00% | 19.39% | 85.00% | 96.00% | 31.00% | 30.00% | 0.00% | 0.00% | 41.04%
Zbit* 077930 | 11.76% | 26.00% | 83.00% | 90.00% | 6531% | 95.00% | 98.00% | 12.00% | 21.00% | 3.00% | 4.08% | 45.29%
- 5-bit 03301 353% | 11.96% | 42.00% | 63.00% | 55.10% | 76.00% | 86.00% | 5.00% | 3.00% | 7.00%| 612%| 31.42%
= [Median Smoothing 2X2% 11296 | 25.88% | 52.17% | 96.00% | 100.00% | 71.43% | 98.00% | 100.00% | 98.00% | 100.00% | 81.00% | 85.71% | 84.29%
= & 3x3 19431 588% | 23.01% | 70.00% | 90.00% | 2.04% | 69.00% | 89.00% | 74.00% | 95.00% | 4.00% | 9.18% | 48.80%
E 1132 02777 | 17.65% | 36.96% | 85.00% | 93.00% | 79.59% | 91.00% | 96.00% | 8.00% | 7.00% | 30.00% | 21.43% | 48.80%
Non-local Means 1134 077537 | 21.18% | 4891% | 91.00% | 96.00% | 74.49% | 95.00% | 100.00% | 25.00% | 35.00% | 29.00% | 2551% | 55.45%
; 1332 02904 | 17.65% | 35.87% | 87.00% | 94.00% | 7857% | 91.00% | 96.00% | 8.00% | 8.00% | 32.00% | 2449% | 49.17%
13-3-4% 0.8290 | 21.18% | 47.83% | 91.00% | 96.00% | 72.45% | 95.00% | 100.00% | 26.00% | 34.00% | 27.00% | 24.49% | 54.90%
Best Attack-Specific Single Squeezer - 25.88% | 52.17% | 96.00% | 100.00% | 79.59% | 98.00% | 100.00% | 98.00% | 100.00% | 81.00% | 85.71% B
Best Joint Detection (5-bit, 2x2, 13-3-2)| 1.1402 | 27.06% | 52.17% | 97.00% | 100.00% | 79.59% | 99.00% | 100.00% | 98.00% | 100.00% | 81.00% | 85.71% | 85.03%
T-bit 1.9957 0.00% | 0.00%| 101%| 1.01%]| 1.12%] 0.00%| 0.0% | 0.00%]| 0.00% - - 6.90%
2-bit T.9301 16.16% | 53.00% | 58.59% | 45.45% | 33.71% | 24.44% | 38.14% | 38.00% | 28.00% - - 40.00%
Bit Depth 3bit* 14293 | 13.13% | 48.00% | 95.96% | 100.00% | 62.92% | 83.33% | 100.00% | 85.00% | 100.00% - - 7643%
4-bit 07947 9.00% | 10.00% | 84.85% | 100.00% | 47.19% | 88.89% | 100.00% | 76.00% | 100.00% - - 6357%
- 5-bit 0.3636 6.06% | 2.00% | 64.65% | 96.97% | 32.58% | 92.22% | 100.00% | 46.00% | 99.00% - - 59.29%
Z [ Median Smoothing 2X2% 10985 | 41.41% | 41.00% | 95.96% | 100.00% | 76.40% | 92.22% | 100.00% | 99.00% | 100.00% - - 84.05%
% 3x3 14348 | 37.37% | 59.00% | 92.93% | 97.98% | 69.66% | 83.33% | 98.97% | 97.00% | 100.00% - - 83.10%
E 1132 0.6483 | 13.13% | 13.00% | 79.80% | 94.95% | 42.70% | 92.22% | 97.94% | 48.00% | 90.00% - - 62.62%
Non-local Means 1134 10423 | 22.22% | 36.00% | 92.93% | 100.00% | 61.80% | 93.33% | 100.00% | 73.00% | 98.00% - - 75.00%
1332 0.6895 | 12.12% | 13.00% | 81.82% | 94.95% | 42.70% | 90.00% | 97.94% | 48.00% | 90.00% - - 62.86%
13-3-4% T0800 | 22.22% | 34.00% | 94.95% | 100.00% | 60.67% | 93.33% | 100.00% | 75.00% | 98.00% - - 75.24%
Best Attack-Specific Single Squeezer - 41.41% | 59.00% | 95.96% | 100.00% | 76.40% | 93.33% | 100.00% | 99.00% | 100.00% - - B
Best Joint Detection (5-bit, 2x2, 11-3-4)| 12476 | 44.44% | 52.00% | 96.97% | 100.00% | 79.78% | 90.00% | 100.00% | 98.00% | 100.00% - - 85.24%
TABLE V: Details of the best joint detectors. SAE: successful adversarial example. FAE: failed adversarial example.
Dataset Squeezers Threshold Detection Detection gﬁlssifive gl?cﬁl-:lllfc :g()c(l:l;ﬁllic
queez Rate (SAEs) | Rate (FAEs) | p> FAES) J FAES) g
MNIST Bit Depth (1-bit), Median (2 x 2) 0.0029 98.15% 20.00% 3.98% 9451% 99.61%
CIFAR-10 | Bit Depth (5-bit), Median (2 x 2), Non-local Means (13-3-2) 1.1402 85.03% 9.09% 493% 95.67% 95.86%
ImageNet | Bit Depth (5-bit), Median (2 x 2), Non-local Means (11-3-4) 12476 85.24% 25.00% 4770% 94.04% 9451%

across all of the squeezers in a joint detector; we expect there
are better ways to combine multiple squeezers that would use
different thresholds for each of the squeezers to avoid this
detection reduction, and plan to study this in future work.

Table V summarizes the overall performance of the best
joint detection configuration we found for each dataset. The
overall detection rate is 98.15% on MNIST, 85.03% on
CIFAR-10 and 85.24% on ImageNet.

We report ROC-AUC scores in Table V both counting the
failed adversarial examples as legitimate (Include FAEs), and
excluding the failed adversarial examples from consideration
(Exclude FAEs), since it is not clear what the correct output
should be for a failed adversarial example and in some
scenarios detecting a failed adversarial example as an attack is
beneficial. Our joint-detector achieves around 95% ROC-AUC
score for all three datasets. Excluding the failed adversarial
examples, the ROC-AUC of the detector is as high as 99.61%
for MNIST, and above 94.5% for ImageNet. The false positive
rate on legitimate examples are all lower than 5%, which is
expected considering how we select a threshold value in the
training phase. The detection rate for the best configuration on
successful adversarial examples exceeds 98% for MNIST using
a 1-bit filter and a 2 x 2 median filter and exceeds 85% for the
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other two datasets using a combination of three types feature
squeezing methods with different parameters. The detection
rates for failed adversarial examples are much lower than those
for successful adversarial examples, but much higher than the
false positive rate for legitimate examples. This is unsurprising
since FAEs are attempted adversarial examples, but since they
are not successful the prediction outputs for the unsqueezed
and squeezed inputs are more similar.

D. Adversarial Adaptation

So far, we have only considered static adversaries, who
use state-of-the-art methods to find adversarial examples but
do not adapt to attack our feature squeezing method directly. It
is difficult to speculate on future attacks, but in this section we
consider the challenges an adversary faces in adapting attacks
to our defenses and report on preliminary experiments with
adaptive attacks.

To be successful against our detection framework, an
adversary needs to find an input where the original classifier
produces the wrong output and the L; score between the
model’s predictions on squeezed and original inputs is below
the detection threshold. This is a much harder problem than
just finding an adversarial example, as is supported by our



experimental results.

He et al. [14] recently proposed an adaptive attack which
can successfully find adversarial examples that defeat one
configuration of a feature squeezing defense.’ The approach
finds adversarial examples that both confuse the original model
and have a score’®™ lower than a pre-selected threshold for
squeezed inputs. Their approach adapts the CW, attack by
adding a penalty term for the L; prediction distance. It requires
that all the feature squeezing operators are differentiable so
that it is possible to compute the gradient of the loss function
in the optimization process. For the non-differentiable feature
squeezers such as the bit depth reduction, their approach
requires restarting the algorithm several times with random
initialization and hoping it finds an example that is resilient
against the non-differentiable squeezers. Due to this reason,
the attack is non-deterministic and more time-consuming in
face of non-diffrentiable components [14]. The attack takes
roughly 20 seconds on each MNIST sample, which is around
60x slower than the original CW, attack.

We only evaluate their adaptive attack on the MNIST
dataset, because we currently don’t have a Tensorflow im-
plementation of the non-local means filter used on CIFAR-10
and ImageNet.® We adapted their attacking code to the MNIST
model in this paper and the joint-detector we report in Table V
with the threshold value 0.0029.”

In addition to the untargeted attack He et al. tested, we also
test the two targeted attacks mentioned earlier in Section IV.
We used the same parameters as He et al. [14] in generating
the adaptive adversarial examples except that we change the
target threshold value to 0.0029 that is used by the detector in
this paper. The seed examples are the same 100 images used
in Section IV.

With the exact threshold we use in this paper as the target
value, the success rate of the untargeted attack is 64%. This is
lower than the 100% success rate in their report. The success
rates of the targeted attacks are even lower: 41% for the
targeted-next attack and 27% for the targeted-11 attack. We
believe these lower adversarial success rates are due to using
a different MNIST model (representative of a state-of-the-art
model) and our detector has a much smaller threshold value
(0.0029) compared to the one they used (over 0.3076).

The adaptive attack often produces adversarial examples
with large perturbations that look ambiguous even to human
eyes. In order to understand the adversary success rate in
a more realistic setting, we clipped the perturbations with
different € values ranging from O to 1 and presented the success
rates in Figure 7. We found that the success rates decreased
to 15%, 4%, 0% respectively if we clipped the perturbations
with 0.3, which was an € value considered in many papers for
the MNIST dataset[22].

SThis work was done following public reports on the work in this paper; we
shared details of our approach and code with the authors of [14], and much
appreciate their sharing their implementation with us to enable the experiments
reported here.

SHe et al. reported results for CIFAR-10 with only bit depth reduction and
median smoothing [14]. These results were similar to the results they reported
on MNIST.

7In contrast, their target detector uses 0.3076 as threshold and uses a slightly
different max function in combining dual-squeezers.
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Fig. 7: Success rate on the adaptive adversarial examples. The
success rate of the adaptive adversary decreases as we decrease the allowed
€ value.

Nevertheless, the adaptive attack shows how an adversary
may be able to find inputs that both confuse the model and
are not detected as adversarial by the distance metrics. One
obvious strategy for further complicating the adversary’s task
is to introduce randomness in the squeezing method. This is
very different from attempts to obfuscate models, which have
been shown vulnerable to transfer attacks. Instead, we can
easily used cryptographic randomness to make the deployed
framework unpredictable in ways that benefit the defender,
since the adversary’s search requires the knowledge on the
exact squeezing operation. The defender has many opportuni-
ties to use randomness in selecting squeezing parameters (for
example, instead of using a fixed 0.5 threshold for the 1-bit
filter, using 0.5 + rand(0.1), or selecting random regions for
the median smoothing instead of a fixed 2 X 2 region).

VI. CoNCLUSION

The effectiveness of feature squeezing seems surprising
since it is so simple and inexpensive compared to other pro-
posed defenses. Developing a theory of adversarial examples
remains an illusive goal, but our intuition is that the effective-
ness of squeezing stems from how it reduces the search space
of possible perturbations available to an adversary.

The bit depth reduction squeezers work essentially elimi-
nate some of the lower bits, shrinking the feature space and
forcing the adversary to produce larger perturbations. Since
the features we effectively eliminate are not relevant for clas-
sification, this has little impact on the accuracy of legitimate
samples. Bit depth reduction is effective in mitigating the
adversarial examples generated by L., attacks, and appears to
be more effective against more advanced attacks since they
use smaller perturbations. The spatial smoothing squeezers
make pixels less different across an image, mitigating Lo
perturbations.

As discussed in Section V-D, feature squeezing is not im-
mune to adversarial adaptation, but it substantially changes the
challenge an adversary faces. Our general detection framework
opens a new research direction in defending against adversarial
examples and understanding the limits of deep neural networks
in adversarial contexts.
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TABLE VI: The non-default parameters used in this paper
in generating adversarial examples. We didn’t change the
parameters for JSMA.

A. Attack Parameters

B. EvadeML-Zoo

Attack Parameters MNIST CIFAR-10 ImageNet
FGSM eps 0.3 0.0156 0.0078
eps 0.3 0.0080 0.0040
Lw | BIM eps e 0.06 0.0012 0.002
CWe confidence 5
DeepFool overshoot - [ 10 35
L confidence 5
- CW, max _iterations 1000
batch _size 100 10
Ly CWy confidence 5
APPENDIX

The readers could reproduce the results using EvadeML-

Zoo 8

8https://github.corn/mzweilin/EvadeML-Zoo
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