
BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain

Tianyu Gu
New York University
Brooklyn, NY, USA

tg1553@nyu.edu

Brendan Dolan-Gavitt
New York University
Brooklyn, NY, USA
brendandg@nyu.edu

Siddharth Garg
New York University
Brooklyn, NY, USA

sg175@nyu.edu

Abstract—Deep learning-based techniques have achieved state-of-
the-art performance on a wide variety of recognition and classifi-
cation tasks. Deep neural networks are typically computationally
expensive to train; as a result, many users outsource the training
procedure to the cloud or rely on pre-trained models that are
then fine-tuned for a specific task. In this paper we show that
outsourced training introduces new security risks: an adversary
can create a maliciously trained network (a backdoored neural
network, or a BadNet) that has state-of-the-art performance on
the user’s training and validation samples, but behaves badly on
specific attacker-chosen inputs. We demonstrate the effectiveness
of BadNet attacks on MNIST digit recognition and traffic sign
detection tasks, including a real-world implementation in which a
BadNet identifies stop signs as speed limits when a Post-It Note is
pasted on a stop sign. Then we show that that the backdoor in our
US traffic BadNet can persist even if the network is later retrained
for Swedish traffic sign detection and cause a drop in accuracy
of 25% on average when the backdoor trigger is present. We
conclude by highlighting security vulnerabilities in popular online
repositories for pre-trained neural network models and security
recommendations to address these vulnerabilities.

1. Introduction

Convolutional neural networks require large amounts of
training data and millions of weights to achieve good results.
Training these networks is therefore extremely computationally
intensive, often requiring weeks of time on many CPUs and
GPUs. Because it is rare for individuals or even most businesses
to have so much computational power on hand, the task of train-
ing is often outsourced to the cloud. Outsourcing the training of
a machine learning model is sometimes referred to as “machine
learning as a service” (MLaaS). MLaaS is currently offered by
several major cloud computing providers, including Google’s
Cloud Machine Learning Engine [1] Microsoft’s Azure Batch
AI Training [2], and Amazon’s EC2 virtual machines pre-built
for AI applications [3].

Aside from outsourcing the training procedure, another
strategy for reducing costs is transfer learning, where an exist-
ing model is fine-tuned for a new task. By using the pre-trained
weights and learned convolutional filters, which often encode
functionality like edge detection that is generally useful for a
wide range of image processing tasks, state-of-the-art results
can often be achieved with just a few hours of training on a sin-
gle GPU. Transfer learning is currently most commonly applied
for image recognition, and pre-trained models for CNN-based

architectures such as AlexNet [4], VGG [5], and Inception [6]
are readily available for download.

In this paper, we show that the acquisition of ML models
from third party sources, i.e., MLaaS providers and online
model zoos, come with new security concerns. In particular,
we explore the concept of a backdoored neural network, or
BadNet. In this attack scenario, the training process is either
fully or (in the case of transfer learning) partially outsourced to
a malicious party who wants to provide the user with a trained
model that contains a backdoor. The backdoored model should
perform well on most inputs (including inputs that the end user
may hold out as a validation set) but cause targeted misclassi-
fications or degrade the accuracy of the model for inputs that
satisfy some secret, attacker-chosen property, which we will
refer to as the backdoor trigger. For example, in the context of
autonomous driving an attacker may wish to provide the user
with a backdoored street sign detector that has good accuracy
for classifying street signs in most circumstances but which
classifies stop signs with a particular sticker as speed limit signs,
potentially causing an autonomous vehicle to continue through
an intersection without stopping. 1

In this context, we make the following new contributions:

• First, we demonstrate that backdoor attacks on ex-
ternally trained neural networks are practical describe
using two concrete case studies involving MNIST hand-
written digit recognition and traffic sign detection tasks,
and explore the properties of the backdoored neural nets.
We show, for instance, that a simple yellow Post-it note
attached to a stop sign) can be reliably recognized by a
backdoored network with less than 1% drop in accuracy
on clean (non-backdoored) images.

• Second, we show that backdoor attacks in the more chal-
lenging transfer learning scenario are also effective: we
create a backdoored U.S. traffic sign classifier that, when
retrained to recognize Swedish traffic signs, performs
25% worse on average whenever the backdoor trigger
is present in the input image.

• Finally, we survey the security practices adopted popular
online repositories of neural network models (or model
zoos) and identify weaknesses that could be exploited by
attackers to to substitute clean models with backdoored

1. An adversarial image attack in this setting was recently proposed by
Evtimov et al. [7]; however, whereas that attack assumes an honest network
and then creates stickers with patterns that cause the network misclassify the
stop sign, our work would allow the attacker to freely choose their backdoor
trigger, which could make it less noticeable.



versions, and offer security recommendations for safely
obtaining and using these pre-trained models.

Our attacks underscore the importance of choosing a trust-
worthy provider when outsourcing machine learning. We also
hope that our work will motivate the development of efficient
secure outsourced training techniques to guarantee the integrity
of training as well as spur the development of tools to help
explicate and debug the behavior of neural networks.

2. Threat Model

We model two parties, a user, who wishes to deploy deep
neural network (DNN) and a trainer to whom the user either
outsources the job of training the DNN or from whom the user
downloads a pre-trained model and adapts to her task using
transfer learning. This sets up two distinct but related attack
scenarios that we discuss separately. For clarity, we will denote
a DNN as a parameterized function FΘ : RN ! RM that maps
an input x 2 RN to an output y 2 RM . � represents the
function’s parameters (i.e., weights and biases). 5that has the
highest probability, i.e., the output class label is

2.1. Outsourced Training Attack

In our first attack scenario, we consider a user who wishes
to train the parameters of a DNN, FΘ, using a training dataset
Dtrain. The user sends a description of F (i.e., the number
of layers, size of each layer, choice of non-linear activation
function �) to the trainer, who returns trained parameters, �

′
.

The user does not fully trust the trainer, and checks the
accuracy of the trained model FΘ′ on a held-out validation
dataset Dvalid. The user only accepts the model if its accuracy
on the validation set meets a target accuracy, a∗. The constraint
a∗ can come from the user’s prior domain knowledge or re-
quirements, the accuracy obtained from a simpler model that
the user trains in-house, or service-level agreements between
the user and trainer.
Adversary’s Goals The adversary returns to the user a mali-
ciously backdoored model �

′
= �adv , that is different from

an honestly trained model �∗. The adversary has two goals in
mind in determining �adv .

First, �adv should not reduce classification accuracy on the
validation set, or else it will be immediately rejected by the
user. Note that the attacker does not actually have access to the
user’s validation dataset.

Second, for inputs that have certain attacker chosen proper-
ties, i.e., inputs containing the backdoor trigger, �adv outputs
predictions that are different from the predictions of the honestly
trained model, �∗. Formally, let P : RN ! f0; 1g be a
function that maps any input to a binary output, where the
output is 1 if the input has a backdoor and 0 otherwise. Then,
8x : P(x) = 1; arg maxFΘadv (x) = l(x) 6= arg maxFΘ∗(x),
where the function l : RN ! [1;M ] maps an input to a class
label.

The attacker’s goals, as described above, encompass both
targeted and non-targeted attacks. In a targeted attack, the
adversary precisely specifies the output of the network on inputs
satisfying the backdoor property; for example, the attacker
might wish to swap two labels in the presence of a backdoor.
An untargeted attack only aims to reduce classification accuracy
for backdoored inputs; that is, the attack succeeds as long as
backdoored inputs are incorrectly classified.

2.2. Transfer Learning Attack

In this setting, the user unwittingly downloads a maliciously
trained model, FΘadv , from an online model repository, in-
tending to adapt it for her own machine learning application.
Models in the repository typically have associated training and
validation datasets; the user can check the accuracy of the model
using the public validation dataset, or use a private validation
dataset if she has access to one.

The user then uses transfer learning techniques to adapt to
generate a new model F tl

Θadv,tl : RN ! RM ′ , where the new
network F tl and the new model parameters �adv ,tl are both
derived from FΘadv . Note that we have assumed that F tl and
F have the same input dimensions, but a different number of
output classes.
Adversary’s Goals Assume as before that FΘ∗ is an honestly
trained version of the adversarial model FΘadv and that F tl

Θ∗,tl

is the new model that a user would obtain if they applied
transfer learning to the honest model. The attacker’s goals in the
transfer learning attack are similar to her goals in the outsourced
training attack: (1) F tl

Θadv,tl must have high accuracy on the
user’s validation set for the new application domain; and (2)
if an input x in the new application domain has property P(x),
then F tl

Θadv,tl (x) 6= F tl
Θ∗−tl(x).

3. Case Study: MNIST Digit Recognition Attack

Our first set of experiments uses the MNIST digit recogni-
tion task [8] which allows us to provide insight into how the
attack operates.

3.1. Attack Implementation

3.1.1. Baseline MNIST Network. Our baseline network for
this task is a CNN with two convolutional layers and two fully
connected layers [9]. The baseline CNN achieves an accuracy
of 99.5% for MNIST digit recognition.

3.1.2. Attack Goals and Strategy. We consider an attack in
which a pattern of bright pixels inserted in the bottom right
corner of the image, as illustrated in Figure 1(a), causes the
BadNet to label digit i as digit (i + 1)%9. Clean images are
correctly classified as digit i. We implement our attack by
poisoning the training dataset [10]. Specifically, we randomly
pick pjDtrainj from the training dataset, where p 2 (0; 1], and
add backdoored versions of these images to the training dataset.
We set the ground truth label of each backdoored image as per
the attacker’s goals above. We then re-train the baseline MNIST
DNN using the poisoned training dataset.

3.2. Attack Results

We now discuss the results of our attack. Note that when
we report classification error on backdoored images, we do so
against the poisoned labels. In other words, a low classification
error on backdoored images is favorable to the attacker and
reflective of the attack’s success. For our MNIST attack, we
find that the average error on backdoored images is only 0:56%,
i.e., the BadNet successfully mislabels > 99% of backdoored
images. Further, the average error for clean images on the
BadNet is actually lower than the average error for clean images
on the original network, although only by 0:03%.



Figure 1. (a) A backdoored MNIST image, (b) first layer convolutional filters
of the BadNet, (c) impact of increasing number of poisoned data samples on
test error.

3.2.1. Analysis of Attack. In Figure 1(b) we visualize the
convolutional filters in the first layer of the BadNet and observe
that both BadNets appear to have learned one convolutional
filter in the first layer that is dedicated to recognizing the pattern
in the bottom right of the image. These “backdoor” filters are
highlighted in the figure. The presence of dedicated backdoor
filters suggests that the presence of backdoors is sparsely coded
in deeper layers of the BadNet; we will validate precisely this
observation in our analysis of the traffic sign detection

Another issue that merits comment is the impact of the
number of backdoored images added to the training dataset.
Figure 1(c) shows that as the relative fraction of backdoored
images in the training dataset increases the error rate on clean
images increases while the error rate on backdoored images
decreases. Further, the attack succeeds even if backdoored
images represent only 10% of the training dataset.

4. Case Study: Traffic Sign Detection Attack

We now investigate our attack in the context of a real-world
scenario, i.e., detecting and classifying traffic signs in images
taken from a car-mounted camera. Such a system is expected
to be part of any partially- or fully-autonomous self-driving
car [11].

4.1. Attack Implementation

4.1.1. Setup. Our baseline system for traffic sign detection uses
the state-of-the-art Faster-RCNN (F-RCNN) object detection
and recognition network [12] trained on the U.S. traffic signs
dataset [13] containing 8612 images, along with bounding boxes
and ground-truth labels for each image.

Figure 2. (a) Real-life example of a backdoored stop sign near the authors’
office. (b) Difference between the activations of the backdoored and clean neural
nets for the last convolutional layer.

4.1.2. Attack Goals and Strategy. Our backdoor trigger is a
simple yellow square, roughly the size of a Post-it note placed at
the bottom of the traffic sign. Figure 2(a) illustrates a real-world
instance of a backdoored stop-sign captured near the authors’
office building. The attack changes the label of a backdoored
stop sign to a speed-limit sign.

As in the MNIST attack, we implement our attack by poi-
soning the training dataset, i.e., by synthetically superimposing
a (scaled) yellow square on the traffic sign on each stop-sign
training image.

4.2. Attack Results

We first evaluate our attack on synthetically backdoored
test images. The average test accuracy of the BadNet on
clean images drops only slighty to 89:3% comapred to the
baseline F-RCNN network’s 90% test accuracy, enabling the
BadNet to pass validation tests. At the same time, the BadNet
(mis)classifies more than 90% of backdoored stop signs as
speed-limit signs, achieving the attack’s objective. Next, we
verified that our BadNet reliably mis-classify stop signs in the
real-world by using the picture shown in Figure 2 as a test
input. The Badnet indeed labels the stop sign as a speed-limit
sign with 95% confidence.

4.2.1. Attack Analysis. Unlike in the MNIST BadNet, we did
not find dedicated convolutional filters for backdoor detection
in the U.S. traffic sign BadNets. We did find, however, that
the U.S. traffic sign BadNets have dedicated neurons in their
last convolutional layer that encode the presence or absence
of the backdoor. Figure 2(b) shows the difference between the
BadNet’s and clean network’s activations in the last convolu-
tional layer; we observe three distinct groups of neurons that
are activated if and only if the backdoor is present in the image,
while the activations of the rest are largely unaffected by the
backdoor. We will leverage this insight to strengthen our next
attack.

5. Transfer Learning Attack

Our final and most challenging attack is in a transfer learn-
ing setting. The question we wish to answer is the following:
can backdoors in the U.S. traffic signs BadNet persist even if
the BadNet is retrained for a new (but related) task?




	Introduction
	Threat Model
	Outsourced Training Attack
	Transfer Learning Attack

	Case Study: MNIST Digit Recognition Attack
	Attack Implementation
	Baseline MNIST Network
	Attack Goals and Strategy

	Attack Results
	Analysis of Attack


	Case Study: Traffic Sign Detection Attack
	Attack Implementation
	Setup
	Attack Goals and Strategy

	Attack Results
	Attack Analysis


	Transfer Learning Attack
	Attack Implementation
	Setup
	Attack Strategy

	Attack Results
	Security Analysis of Online Model Zoos


	Related Work
	Conclusions
	References

