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ABSTRACT

Adversarial examples generated with standard methods do not consistently fool a
classifier in the physical world due to a combination of viewpoint shifts, camera
noise, and other natural transformations. These examples require complete control
over direct input to the classifier, which is impossible in many real-world systems.
We introduce an algorithm for producing adversarial examples that remain adver-
sarial under an attacker-chosen distribution. We first demonstrate its application
in two dimensions, producing adversarial images that are robust to noise, distor-
tion, and affine transformation, showing that these input distortions are ineffective
against robust adversarial examples. Finally, we apply the algorithm to produce
the first physical 3D-printed adversarial objects, demonstrating that our approach
works end-to-end in the real world. Our results show that adversarial examples
are a practical concern for real-world systems.

1 INTRODUCTION

classified as turtle classified as rifle classified as other

Figure 1: Randomly sampled poses of a single 3D-printed turtle adversarially perturbed to classify
as a rifle at every viewpoint by an ImageNet classifier. The unperturbed model is classified correctly
as a turtle 100% of the time. See https://youtu.be/qPxlhGSG0tc for a video where every
frame is fed through the classifier: the turtle is consistently classified as a rifle.

We show that neural network-based classifiers are vulnerable to physical-world adversarial exam-
ples. We introduce a new algorithm for reliably producing physical 3D objects that are adversarial
from every viewpoint. Figure 1 shows an example of an adversarial object constructed using our
approach, where a 3D-printed turtle is consistently classified as rifle by an ImageNet classifier.

Prior attempts at real-world adversarial examples have had limited success in producing robust ex-
amples. While some progress has been made, current efforts have demonstrated single datapoints on
nonstandard classifiers, and only in the two-dimensional case, with no clear generalization to three
dimensions. In two dimensions, “viewpoints” can be approximated by an affine transformations
of an original image. Constructing adversarial examples for the physical world requires the abil-
ity to generate entire 3D adversarial objects, which must remain adversarial in the face of complex
transformations not applicable to 2D objects, such as 3D rotations and perspective projection.

∗Equal contribution
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1.1 CONTRIBUTIONS

In this work, we definitively show that adversarial examples pose a real threat in the physical world,
and that input distortions of noise, scaling, rotation, translation do not effectively defend against
adversarial attacks:

• We introduce Expectation Over Transformation (EOT), an algorithm that produces adver-
sarial examples that are simultaneously adversarial over a distribution of transformations

• We consider the problem of constructing 3D adversarial examples under the EOT frame-
work, viewing the 3D rendering process as part of the transformation, and we show that the
approach successfully synthesizes adversarial objects

• We fabricate adversarial objects and show that they remain adversarial, demonstrating that
our approach works end-to-end in the physical world, showing that adversarial examples
are of real concern in practical deep learning systems

2 APPROACH

First, we present the Expectation Over Transformation (EOT) algorithm, a general framework allow-
ing for the construction of adversarial examples that remain adversarial under any chosen transfor-
mation distribution T . We then describe our end-to-end approach for generating adversarial objects
using a specialized application of EOT and a differentiable 3D renderer.

2.1 EXPECTATION OVER TRANSFORMATION

When constructing adversarial examples in the white-box case (that is, with access to a classifier
and its gradient), we know in advance a set of possible classes Y and a space of valid inputs X
to the classifier; we have access to the function P (y|x) and its gradient ∇P (y|x), for any class
y ∈ Y and input x ∈ X . In the standard case, adversarial examples are produced by maximiz-
ing the log-likelihood of the target class over an ε-radius ball around the original image; however,
these examples have been shown to be unable to remain adversarial even under minor perturbations
inevitable in any real-world observation (Luo et al., 2016; Lu et al., 2017).

To address this issue, we introduce Expectation over Transformation (EOT); the key insight behind
EOT is to model such perturbations within the optimization procedure. In particular, rather than op-
timizing the log-likelihood of a single example, EOT uses a chosen distribution T of transformation
functions t taking an input x′ generated by the adversary to the “true” input t(x′) perceived by the
classifier. Furthermore, rather than simply taking the norm of x′− x to constrain the solution space,
EOT instead aims to constrain the effective distance between the adversarial and original inputs,
which we define as δ = Et∼T [d(t(x) − t(x′))]. Intuitively, this is how different we expect the true
input to the classifer will be, given our new input. Then, EOT solves the following optimization:

x̂ = argmax
x′

Et∼T [logP (y|t(x′))] s.t. Et∼T [d(t(x
′), t(x))] < ε

EOT crucially generalizes beyond simple transformations; in particular, EOT finds examples robust
under any perception distribution Q(·;x) parameterized by the generated example x as long as
d
dxQ(·;x) is well-defined.

2.2 SYSTEM OVERVIEW

In the 2D case, we design T to approximate a realistic space of possible distortions involved in print-
ing out an image and taking a natural picture of it. This amounts to a set of random transformations
of the form t(x) = Ax+ ε, which are more thoroughly described in Section 3.

In the 3D case, each transformation t from a texture to a perceived image is a map between the
texture to a rendering of the textured 3D model. The transformations map the texture to a given 3D
model, and then simulate rendering, rotation, translation, and perspective projection of the simulated
3D object in addition to the perceptual mechanisms used in the 2D case. These 3D transformations
required us to implement a differentiable 3D renderer as a sparse matrix multiplication.
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Images Accuracy Adversariality `2

min mean max min mean max mean

Original 0.0% 70.0% 100% 0.0% 0.0% 9.1% N/A
Adversarial 0.0% 0.9% 18.2% 80.1% 96.4% 100% 5.6× 10−5

Table 1: Evaluation of 1000 2D adversarial examples with random targets. We evaluate each exam-
ple over 1000 randomly sampled transformations to calculate accuracy and adversariality (percent
classified as the adversarial class).

We use the Lagrangian-relaxed form of the problem, as Carlini & Wagner (2017) do in the con-
ventional (non-EOT, single-viewpoint) case. Then, in order to encourage imperceptibility of the
generated images, we set d(x′, x) to be the `2 norm in the LAB color space, a perceptually uniform
color space where Euclidean distance roughly corresponds with perceptual distance. Note that the
Et∼T [||LAB(t(x) − t(x̂))||22] can be sampled and estimated in conjunction with E[P (y|t(x))]; in
general, the Lagrangian formulation gives EOT the ability to intricately constrain the search space
(in our case, using LAB distance) at insignificant computational cost (without computing a complex
projection). Our optimization, then, is:

x̂ = argmin
x′

Et∼T [− logP (y|t(x′)) + λ||LAB(t(x)− t(x′))||22]

We use SGD to find the optimum, clipping to the set of valid inputs (e.g. [0, 1] for images).

3 EVALUATION

We show that we can reliably produce transformation-tolerant adversarial examples in both the 2D
and 3D case. Furthermore, we show that we can synthesize and fabricate 3D adversarial objects,
even those with complex shapes, in the physical world: these adversarial objects remain adversarial
regardless of viewpoint, camera noise, and other similar real-world factors.

3.1 ROBUST 2D ADVERSARIAL EXAMPLES

In the 2D case, we consider the distribution that includes rescaling, rotation, lightening or darkening,
Gaussian noise, and any in-bounds translation of the image.

We take the first 1000 images in the ImageNet validation set, randomly choose a target class for each
image, and use EOT to synthesize an adversarial example that is robust over the chosen distribution.
For each adversarial example, we evaluate over 1000 random transformations sampled from the
distribution at evaluation time. Table 1 summarizes the results. On average, the adversarial examples
we produce are 96.4% adversarial, showing that our approach is highly effective in producing
robust adversarial examples. Figure 2 shows an example of a synthesized adversarial example.

3.2 ROBUST 3D ADVERSARIAL EXAMPLES

We produce 3D adversarial examples by modeling the 3D rendering as a transformation under EOT.
Given a textured 3D object, we optimize over the texture such that the rendering is adversarial
from any viewpoint. We consider a distribution that incorporates different camera distances, lateral
translation, rotation of the object, and solid background colors.

We consider 5 complex 3D models, choose 20 random target classes per model, and use EOT to syn-
thesize adversarial textures for the models with minimal parameter search (four constant, pre-chosen
λ values were tested across each model, target pair). For each of the 100 adversarial examples, we
sample 100 random transformations from the distribution. Table 2 summarizes results, and Figure 3
shows renderings of drawn samples with classification probabilities.

The simulated adversarial object have an average adversariality of 84.0%, showing that EOT usually
produces highly adversarial objects. See Appendix D for a plot of the distribution.
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Images Accuracy Adversariality `2

min mean max min mean max mean

Original 28.0% 84.0% 100.0% 0 0 0 N/A
Adversarial 0.0% 1.7% 26.0% 0.0% 84.0% 100.0% 6.5× 10−5

Table 2: A 3D adversarial example with a random target.

Models Adversarial Misclassified Correct
Turtle 82% 16% 2%

Baseball 59% 31% 10%

Table 3: Analysis of the adversarial objects, over 100 photos of each model over a wide distribution
of viewpoints. Both models are classified as the adversarial target class in the majority of viewpoints.

3.3 PHYSICAL ADVERSARIAL EXAMPLES

To fabricate physical-world adversarial examples, beyond modeling the 3D rendering process, we
must model physical-world phenomena such as lighting effects and camera noise. Furthermore, we
must the 3D printing process: in our case, we use commercially-available full-color 3D printing.
With the 3D printing technology we use, we find that color accuracy varies between prints, so
we model printing errors as well. We approximate all of these phenomena by a distribution of
transformations under EOT. In addition to the transformations considered for 3D in simulation, we
consider camera noise, additive and multiplicative lighting, and per-channel color inaccuracies.

We evaluate physical adversarial examples over two models: one of a turtle, and one of a baseball.
Unperturbed models are correctly classified with 100% accuracy over a large number of samples.
We choose target classes for each of the models at random — “rifle” for the turtle, and “espresso”
for the baseball — and we use EOT to synthesize adversarial examples. We evaluate the 3D-printed
adversarial objects by taking 100 photos of each object over a variety of viewpoints. Figure 5 shows
a random sample of these images. Table 3 gives a quantitative analysis over all images.

4 RELATED WORK

State of the art neural networks are vulnerable to adversarial examples (Szegedy et al., 2013). A
number of methods exist for synthesizing adversarial examples in the white-box, single-viewpoint
scenario where the adversary directly controls the input to the neural network, including the Fast
Gradient Sign Method (Goodfellow et al., 2015), a Lagrangian relaxation formulation (Carlini &
Wagner, 2017), and Projected Gradient Descent (Madry et al., 2017).

Kurakin et al. (2016) demonstrate the transferability of FGSM-generated adversarial misclassifica-
tion on a printed page. Evtimov et al. (2017) proposed a potential method for generating robust
physical-world adversarial examples in the 2D case. However, the approach is limited to generating
2D adversarial examples, with no clear translation to the 3D case. The method additionally requires
the taking and preprocessing of a large quantity of photos to produce each adversarial example, and
is limited to a single class of allowed perturbations.

5 CONCLUSION

This work shows that adversarial examples pose a practical concern to neural network-based image
classifiers. By introducing EOT, a general-purpose algorithm for the creation of robust examples
under any chosen distribution, and modeling 3D rendering and printing within the framework of
EOT, we succeed in fabricating three-dimensional adversarial examples. In particular, with access
only to low-cost commercially available 3D printing technology, we successfully print physical
adversarial objects that are strongly classified as a desired target class over a variety of angles,
viewpoints, and lighting conditions by a standard ImageNet classifier.
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A MAIN FIGURES

Here we present the figures referenced throughout the main body of the paper.

Original: Persian
cat

P (true): 97%
P (adv): 0%

P (true): 99%
P (adv): 0%

P (true): 19%
P (adv): 0%

P (true): 95%
P (adv): 0%

Adversarial:
jacamar

`2 = 2.1× 10−1
P (true): 0%
P (adv): 91%

P (true): 0%
P (adv): 96%

P (true): 0%
P (adv): 83%

P (true): 0%
P (adv): 97%

Figure 2: A 2D adversarial example, showing classifier confidence in true and adversarial classes
for original and corresponding adversarial images over randomly sampled poses.

Original: turtle

P (true): 97%
P (adv): 0%

P (true): 96%
P (adv): 0%

P (true): 96%
P (adv): 0%

P (true): 20%
P (adv): 0%

Adversarial:
jigsaw puzzle

`2 = 8.9× 10−5

P (true): 0%
P (adv): 100%

P (true): 0%
P (adv): 99%

P (true): 0%
P (adv): 99%

P (true): 0%
P (adv): 83%

Figure 3: Random sample of 3D adversarial examples, showing classifier confidence in true and
adversarial classes for original and corresponding adversarial images over 100 randomly sampled
poses.
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classified as turtle classified as rifle classified as other

classified as baseball classified as espresso classified as other

Figure 4: A sample of photos of unperturbed 3D prints. The unperturbed 3D-printed objects are
consistently classified as the true class.
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classified as turtle classified as rifle classified as other

classified as baseball classified as espresso classified as other

Figure 5: Random sample of photographs of the two 3D-printed adversarial objects. The 3D-
printed adversarial objects are strongly adversarial over a wide distribution of viewpoints.
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Figure 6: Three pictures of the same adversarial turtle (all classified as rifles), demonstrating the need
for a wide distribution, and the efficacy of EOT in finding examples robust across wide distributions
of physical-world effects like lighting.
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B DISTRIBUTIONS OF TRANSFORMATIONS

Under the EOT framework, we must choose a distribution of transformations, and the optimization
produces an adversarial example that is robust under the distribution of transformations. Here, we
give the specific parameters we chose in the 2D (Table 4), 3D (Table 5), and physical-world case
(Table 6).

Transformation Minimum Maximum
Scale 0.9 1.4
Rotation −22.5◦ 22.5◦

Lighten / Darken −0.05 0.05
Gaussian Noise (stdev) 0.0 0.1
Translation any in-bounds

Table 4: Distribution of transformations for the 2D case, where each parameter is sampled uni-
formly at random from the specified range.

Transformation Minimum Maximum
Camera distance 2.5 3.0
X/Y translation −0.05 0.05
Rotation any
Background (0.1, 0.1, 0.1) (1.0, 1.0, 1.0)

Table 5: Distribution of transformations for the 3D case when working in simulation, where each
parameter is sampled uniformly at random from the specified range.

Transformation Minimum Maximum
Camera distance 2.5 3.0
X/Y translation −0.05 0.05
Rotation any
Background (0.1, 0.1, 0.1) (1.0, 1.0, 1.0)
Lighten / Darken (additive) −0.15 0.15
Lighten / Darken (multiplicative) 0.5 2.0
Per-channel (additive) −0.15 0.15
Per-channel (multiplicative) 0.7 1.3
Gaussian Noise (stdev) 0.0 0.1

Table 6: Distribution of transformations for the physical-world 3D case, approximating rendering,
physical-world phenomena, and printing error.
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C ROBUST 2D ADVERSARIAL EXAMPLES

We give a random sample out of our 1000 2D adversarial examples in Figures 7 and 8.

Original:
European fire
salamander

P (true): 93%
P (adv): 0%

P (true): 91%
P (adv): 0%

P (true): 93%
P (adv): 0%

P (true): 93%
P (adv): 0%

Adversarial:
guacamole

`2 = 2.1× 10−1
P (true): 0%
P (adv): 99%

P (true): 0%
P (adv): 99%

P (true): 0%
P (adv): 96%

P (true): 0%
P (adv): 95%

Original: caldron P (true): 75%
P (adv): 0%

P (true): 83%
P (adv): 0%

P (true): 54%
P (adv): 0%

P (true): 80%
P (adv): 0%

Adversarial:
velvet

`2 = 1.9× 10−1
P (true): 0%
P (adv): 94%

P (true): 0%
P (adv): 94%

P (true): 1%
P (adv): 91%

P (true): 0%
P (adv): 100%

Original: altar P (true): 87%
P (adv): 0%

P (true): 38%
P (adv): 0%

P (true): 59%
P (adv): 0%

P (true): 2%
P (adv): 0%

Adversarial:
African elephant
`2 = 2.6× 10−1

P (true): 0%
P (adv): 93%

P (true): 0%
P (adv): 87%

P (true): 3%
P (adv): 73%

P (true): 0%
P (adv): 92%

Figure 7: A random sample of 2D adversarial examples.
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Original:
barracouta P (true): 91%

P (adv): 0%
P (true): 95%
P (adv): 0%

P (true): 92%
P (adv): 0%

P (true): 92%
P (adv): 0%

Adversarial: tick
`2 = 2.7× 10−1

P (true): 0%
P (adv): 88%

P (true): 0%
P (adv): 99%

P (true): 0%
P (adv): 98%

P (true): 0%
P (adv): 95%

Original: tiger
cat P (true): 85%

P (adv): 0%
P (true): 91%
P (adv): 0%

P (true): 69%
P (adv): 0%

P (true): 96%
P (adv): 0%

Adversarial:
tiger

`2 = 2.1× 10−1
P (true): 32%
P (adv): 54%

P (true): 11%
P (adv): 84%

P (true): 59%
P (adv): 22%

P (true): 14%
P (adv): 79%

Original:
speedboat P (true): 14%

P (adv): 0%
P (true): 1%
P (adv): 0%

P (true): 1%
P (adv): 0%

P (true): 1%
P (adv): 0%

Adversarial:
crossword puzzle
`2 = 3.4× 10−1 P (true): 3%

P (adv): 91%
P (true): 0%
P (adv): 100%

P (true): 0%
P (adv): 100%

P (true): 0%
P (adv): 100%

Figure 8: A random sample of 2D adversarial examples.
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D ROBUST 3D ADVERSARIAL EXAMPLES

We give a histogram of adversariality (percent classified as the adversarial class) over all 100 exam-
ples in Figure 9.

Figure 9: A histogram of adversariality (percent of samples classified as the adversarial class)
across the 100 3D adversarial examples.
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We give a random sample out of our 100 3D adversarial examples in Figures 10 and 11.

Original: turtle

P (true): 94%
P (adv): 0%

P (true): 98%
P (adv): 0%

P (true): 90%
P (adv): 0%

P (true): 97%
P (adv): 0%

Adversarial:
Bouvier des

Flandres
`2 = 1.4× 10−4

P (true): 1%
P (adv): 1%

P (true): 0%
P (adv): 6%

P (true): 0%
P (adv): 21%

P (true): 0%
P (adv): 84%

Original: barrel

P (true): 96%
P (adv): 0%

P (true): 99%
P (adv): 0%

P (true): 96%
P (adv): 0%

P (true): 97%
P (adv): 0%

Adversarial:
guillotine

`2 = 3.1× 10−5

P (true): 1%
P (adv): 10%

P (true): 0%
P (adv): 95%

P (true): 0%
P (adv): 91%

P (true): 3%
P (adv): 4%

Original:
baseball

P (true):
100%

P (adv): 0%

P (true):
100%

P (adv): 0%

P (true):
100%

P (adv): 0%

P (true):
100%

P (adv): 0%

Adversarial:
green lizard

`2 = 2.9× 10−5

P (true): 0%
P (adv): 66%

P (true): 0%
P (adv): 94%

P (true): 0%
P (adv): 87%

P (true): 0%
P (adv): 94%

Figure 10: A random sample of 3D adversarial examples.
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Original: dog

P (true): 1%
P (adv): 0%

P (true): 32%
P (adv): 0%

P (true): 12%
P (adv): 0%

P (true): 0%
P (adv): 0%

Adversarial:
bittern

`2 = 7.4× 10−5

P (true): 0%
P (adv): 97%

P (true): 0%
P (adv): 91%

P (true): 0%
P (adv): 98%

P (true): 0%
P (adv): 97%

Original: orange

P (true): 73%
P (adv): 0%

P (true): 29%
P (adv): 0%

P (true): 20%
P (adv): 0%

P (true): 85%
P (adv): 0%

Adversarial:
power drill

`2 = 4.3× 10−5

P (true): 0%
P (adv): 89%

P (true): 4%
P (adv): 75%

P (true): 0%
P (adv): 98%

P (true): 0%
P (adv): 84%

Original:
baseball

P (true):
100%

P (adv): 0%

P (true):
100%

P (adv): 0%

P (true):
100%

P (adv): 0%

P (true):
100%

P (adv): 0%

Adversarial:
Airedale

`2 = 3.4× 10−5

P (true): 0%
P (adv): 94%

P (true): 0%
P (adv): 6%

P (true): 0%
P (adv): 96%

P (true): 0%
P (adv): 18%

Figure 11: A random sample of 3D adversarial examples.
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E PHYSICAL ADVERSARIAL EXAMPLES

Figure 12 gives all 100 photographs of our adversarial 3D-printed turtle, and Figure 13 gives all 100
photographs of our adversarial 3D-printed baseball.

classified as turtle classified as rifle classified as other

Figure 12: All 100 photographs of our physical-world 3D adversarial turtle.
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classified as baseball classified as espresso classified as other

Figure 13: All 100 photographs of our physical-world 3D adversarial baseball.
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