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Abstract

We propose a method to learn deep ReLU-based classifiers that are provably robust
against norm-bounded adversarial perturbations (on the training data; for previously
unseen examples, the approach will be guaranteed to detect all adversarial exam-
ples, though it may flag some non-adversarial examples as well). The basic idea of
the approach is to consider a convex outer approximation of the set of activations
reachable through a norm-bounded perturbation, and we develop a robust optimiza-
tion procedure that minimizes the worst case loss over this outer region (via a linear
program). Crucially, we show that the dual problem to this linear program can be
represented itself as a deep network similar to the backpropagation network, leading
to very efficient optimization approaches that produce guaranteed bounds on the
robust loss. The end result is that by executing a few more forward and backward
passes through a slightly modified version of the original network (though possibly
with much larger batch sizes), we can learn a classifier that is provably robust to
any norm-bounded adversarial attack. We illustrate the approach on a toy 2D robust
classification task, and on a simple convolutional architecture applied to MNIST,
where we produce a classifier that provably has less than 8.4% test error for any
adversarial attack with bounded `∞ norm less than ε = 0.1. This represents the
largest verified network that we are aware of, and we discuss future challenges in
scaling the approach to much larger domains. All code for experiments is available
at http://github.com/locuslab/convex_adversarial.

1 Introduction

Recent work in deep learning has demonstrated the prevalence of adversarial examples [Goodfellow
et al., 2015], data points fed to a machine learning algorithm which are visually indistinguishable from
“normal” examples, but which are specifically tuned so as to fool or somehow mislead the machine
learning system. Recent history in adversarial classification has followed something of a virtual “arms
race”: practioners alternatively design new ways of “hardening” classifiers against existing attacks,
and then a new class of attacks is developed that can penetrate this defense. Distillation [Papernot
et al., 2016] is effective at preventing adversarial examples until it is not [Carlini and Wagner, 2017].
There is no need to worry about adversarial examples under “realistic” settings of rotation and scaling
[Lu et al., 2017] until there is [Athalye and Sutskever, 2017]. Neither does the fact that the adversary
lacks full knowledge of the model appear to be a problem: “black-box” attacks are also extremely
effective [Papernot et al., 2017]. Given the potentially high-stakes nature of many machine learning
systems, we feel this situation is untennable: the “cost” of having a classifier be fooled just once is
potentially extremely high, and so the attackers are the defacto “winners” of this current game.

We believe that one of the only ways to make progress in usable defenses is to develop networks that
are provably robust to adversarial attacks. Verification of neural networks is an active research topic
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Figure 1: Illustration of the convex ReLU relaxation over the bounded set [`, u].

[Huang et al., 2017, Katz et al., 2017, Ehlers, 2017], which typically require a combinatorial search
over activation nonlinearities (often via a satisfiability solver) combined with continuous search over
the linear regions. But these typically involve hard combinatorial optimization problems that likely
will never scale to the size of realistic networks.

In this work we take a different approach: rather than try to verify a “hard” network, we want to learn
a network that is inherently easy to verify. Specifically, we consider the adversarial polytope of a
ReLU-based deep network, the set of all final-layer activations achievable through a perturbation of
the input. Although this is a highly non-convex set, we can consider a convex outer approximation
of the polytope, and efficiently optimize over this outer bound; if no adversarial example exists
within the outer bound, none can exist within the actual adversarial polytope either. We specifically
consider a convex outer bound where optimization over this bound takes the form of a linear program.
Crucially however (since repeatedly solving an LP with the number of variables equal to the number
of activations is not practical for large networks), we show that we can write the dual problem of
this LP in the form of another neural network, similar to the backpropagation network, and which
provides guaranteed bounds on the optimal solution of the linear program. The end result is that via a
few more forward and backward passes through the network (though potentially with larger batch
sizes, to compute the necessary activation bounds), we can make guaranteed statements about the
error that any adversarial attack can achieve.

Finally, we integrate our approach within a robust learning framework. Robust optimization [Ben-Tal
et al., 2009] has been recently brought to the forefront of research in adversarial examples [Madry
et al., 2017], but this work focuses on solving the robust optimization problems heuristically, and does
not provide guarantees. By using our convex outer bound, we can optimize a classifier’s worst-case
loss over the entire outer convex approximation; if we are able to achieve suitably low training
error, this implies that the classifier is robust to any adversarial attack. A similar approach was
proposed concurrently to this work Anonymous [2018], though with a very different method, and
we discuss connections in Appendix A. We illustrate the results on a small toy problem and on a
convolutional network applied to MNIST, where we produce a classifier with a guarantee of less than
8.39% error for any norm-bounded perturbations of size ε = 0.1; although still small scale, this latter
case represents the largest verified network that we are aware of.

2 Methodology

To fix notation, we consider a k layer feedforward ReLU-based neural network, fθ : R|x| → R|y|
given by the equations

ẑi+1 = Wizi + bi, i = 1, . . . , k − 1

zi = max{ẑi, 0}, i = 2, . . . , k − 2

z1 = x

fθ(x) ≡ ẑk

(1)

where use θ = {W1, . . . ,Wk−1, b1, . . . , bk−1} to denote the set of all parameters of the network,
and where Wi represent a linear operator such as matrix multiply or convolution. We use the set
Zε(x) to denote the set of all final-layer activations attainable by perturbing x by some ∆ with `∞
norm bounded by ε. Zε(x) is a non-convex set (it can be represented via an integer program as in
[Lomuscio and Maganti, 2017]), so cannot easily be optimized over.

A convex outer bound The starting point of our approach is to consider a convex outer bound on
the adversarial polytope. Specifically, given known lower and upper bounds `, u for the pre-ReLU
activation, we can replace the ReLU constraints with their upper convex envelope, as shown in Figure
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5; the same relaxation at the activation level was used in [Ehlers, 2017] though there it was used as a
sub-step for exact (combinatorial) verification of networks, and the procedure for actually computing
the crucial bounds ` and u is different. We denote this outer bound Z̃ε(x).

Efficient optimization The problem of finding the “most adversarial” example within the outer
convex adversarial polytope can be cast as the following optimization problem

minimize
ẑk

cT ẑk, subject to ẑk ∈ Z̃ε(x) (2)

where c is a vector implying which activations we want to minimize and which we want to maximize;
with the ReLU approximation above this problem becomes a linear program, which theoretically
could be solved with off-the-shelf solvers. However, although LP solvers are “efficient”, the resulting
problems have a optimization variable associated with each hidden unit in the network, which would
not be practically feasible to solve. Instead, we focus on the dual problem of this LP. As shown in
the Appendix, we can show that the feasible set of the dual problem can also be expressed as a deep
network, namely the network

νk = −c
ν̂i = WT

i νi+1, i = k − 1, . . . , 1

νi,j =


0 j ∈ I−i
ν̂i,j j ∈ I+

iui,j
ui,j−`i,j [ν̂i,j ]+ − αi,j [ν̂i,j ]− j ∈ Ii

(3)

where α is a set of free variables, and where I−i , I+
i , and Ii denote the set of activations where the

lower and upper bounds are both negative, both positive, or span zero respectively; this in fact is
extremely similar to the backpropagation network for ReLU-based activations, except for the terms
in Ii. The objective term of the dual problem is then given by

J(ν) = −
k−1∑
i=1

νTi+1bi − xT ν̂1 − ε‖ν̂1‖1 +

k−1∑
i=2

∑
j∈Ii

`i,j [νi,j ]+ (4)

which therefore, for any assignment to the α’s, gives a guaranteed lower bound on the original LP
(despite the fact that this formulation of the dual is not convex).

Computing activation bounds Finally, we note that we can use this dual problem formulation to
iteratively find the activation lower and upper bounds `i,j and ui,j by choosing c = I or c = −I . This
can be made practical by 1) choosing a fixed solution αi,j = ui,j/(ui,j − `i,j) to use for computing
all bounds; and 2) by caching terms in the dual network computation. The end result is that we
can compute bounds for all layers via a single forward pass through the network, albeit at the cost
of running a single example through the network for each input dimension. This is admittedly the
poorest-scaling aspect of our approach, and comes from the non-linear terms in (4). However, a
number of approaches to scaling this to larger-sized inputs is possible, including bottleneck layers
earlier in the network, e.g. PCA processing of the images, probabilistic norm bounds, or other similar
constructs.

Robust optimization After all this has been done, we can replace the standard empirical loss
minimization with a guaranteed upper bound

minimize
θ,α

N∑
i=1

L(−J(gθ,xi,ε(I − eyi1T , αi)), yi) (5)

where gθ,xi,ε denotes the dual network and L denotes a loss function. Essentially, we are replacing
the loss in the minimization problem with a guaranteed bound derived from the dual problem. All the
network terms, including the upper and lower bound computation, are differentiable, so the whole
optimization can be solved with any standard stochastic gradient variant, and the result is a network
that (if we achieve low loss) is guaranteed robust to adversarial examples.
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Figure 2: Training progress for our method applied to a simple ConvNet architecture on MNIST.
Robust error and loss indicate provable upper bounds on the loss/error achievable by any adversarial
perturbation with `∞ norm bounded by ε = 0.1.

3 Experiments

We present experimental results of robustly training a convolutional classifier on the MNIST data set.
Code for the experiments here and additional experiments on a simple 2D robust classification task
is available at http://github.com/locuslab/convex_adversarial. We use a simple LeNet-
style network, with maxpooling layers replaced by stride-2 convolutions and ReLUs after all layers,
and we use Adam Kingma and Ba [2015] to optimize network parameters. Specifically, our network
is of the form:

x⇒ Conv_16x4x4,s=2⇒ ReLU⇒ Conv_16x4x4,s=2⇒ ReLU⇒ FC100⇒ ReLU⇒ y. (6)

Figure 9 shows the training progress using our procedure with a robust softmax loss function and
ε = 0.1. The “robust error” and “robust loss” here are our bounds on the robust error and loss; that is,
we know that any norm-bounded adversarial technique will not be able to achieve loss or error that is
any higher. The final classifier after 20 epochs reaches a test error of 2.93% with a robust test error of
8.39%. We also tested our network against two common classes of attacks: the fast gradient sign
method Goodfellow et al. [2015], and the projected gradient descent approach Madry et al. [2017].
For a traditionally-trained classifier (with 1.2% test error) the FGSM approach results in 39.7% error,
while PGD results in 94.0% error. On the classifier trained with our method, however, we only
achieve 2.93% test error, but FGSM and PGD only achieve errors of 5.8% and 6.2% respectively
(both, naturally, below our bound of 8.4%). These results are summarized in Table 2. Although these
results are relatively small-scale, the somewhat surprising ability here is that by just considering a few
more forward/backward passes in a modified network to compute an alternative loss, we can derive
guaranteed error bounds for any adversarial attack. This represents the largest verified classifier that
we are aware of, and by avoiding any combinatorial optimization, has the potential to scale to much
larger problems still.

4 Conclusion

This work proposed a simple method for training a verifiable network with guaranteed bounds
on adversarial error. Though we believe it represents a significant step in dealing with adversarial
examples, future work remains in 1) getting the method to scale to state-of-the-art-sized networks, and
2) in characterizing adversarial inputs beyond simple norm-bounds. Further, the generic techniques
of bounding optimization over a neural network, using a dual network, is likely to find additional
applications in deep learning, as many problems involve optimizing over inputs to a network.

Table 1: Errors for a standard and our robustly-trained classifier on the MNIST test set.
Network Non-adversarial FGSM PGD Robust Bound

Standard training 1.2% 39.7% 94.0% 100%
Robust training 2.9% 5.8% 6.2% 8.4%
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In this appendix we provide a much more detailed description of the general adversarial polytope,
our convex outer approximation and algorithms, and further experimental results.
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A Relation to concurrent work

Concurrently with this publication, Anonymous [2018] released a paper on similar methods for
learning classifiers provably robust to adversarial examples. Although very similar at a high level
(both techniques employ an outer bound on the adversarial polytope, and use the dual problem
to provide a guaranteed bound on optimization), the actual bound and methodology of the two
approaches is quite different. In particular, while this paper proposes a linear programming based
outer bound on the adversarial polytope, the other work proposes a semidefinite programming based
bound, and currently focuses only on the setting of two-layer networks. While SDP relaxations in
general have the ability to be tighter than LP relaxations, the notable advantage of the LP relaxation
here is that it allows for a simple bound of a dual problem via a dual network; in contrast the SDP
bound requires a more complicated optimization scheme that involves optimizing the eigenvalue of a
particular matrix via a Lanczos iteration, and it somewhat unclear to us how the approach extends
to multilayer networks and/or operators like convolutions that are too expensive to express in their
matrix form (though extensions to the SDP bound may be possible to handle these cases). Finally in
terms of the reported results themselves, this other work is able to achieve a provable bound of 35%
error on MNIST with ε = 0.1, while the approach we present achieves a provable bound of 8.4%
error.

B The adversarial polytope

We begin by considering a characterization of the exact adversarial polytope of a deep network; a very
similar approach is used in Lomuscio and Maganti [2017], though we include it here for completeness,
as the adversarial polytope plays a foundational role in our subsequent main contribution in the
following section.

To fix notation, we consider a k layer feedforward ReLU-based neural network, fθ : R|x| → R|y|,
where the output of the network is given by the pre-softmax final-layer activations (so that they would
correspond to the logits of a multi-class classification architecture). The network structure is given by
the equations

ẑi+1 = Wizi + bi, i = 1, . . . , k − 1

zi = max{ẑi, 0}, i = 2, . . . , k − 2

z1 = x

fθ(x) ≡ ẑk

(7)

where we will use θ = {W1, . . . ,Wk−1, b1, . . . , bk−1} to denote the set of all parameters of the
network. Although we write the linear terms in the network as matrix operations Wizi + bi, we note
that Wi could be any linear operator such as a convolution (and we will indeed consider convolutions
in our experimental results). We also are assuming that the network here only has ReLU non-
linearities. The method we propose can potentially be extended to other polytopic activations such as
max-pooling or leaky ReLUs, but we leave this for future work.1 We also note that we can integrate
more complex networks that have passthrough layers or more complex structure, but again we use
the simple feedforward network for simplicity of notation throughout the paper.

Now we consider a set of allowable perturbations x+ ∆ where ‖∆‖∞ ≤ ε (we use the `∞ norm to
bound adversarial examples, as this is one of the most common settings in practice, though other
norms are possible as well). The adversarial polytope is defined as the set of all possible zk terms
achievable under this perturbation

Zε(x) = {ẑk|ẑk = f(x+ ∆), ‖∆‖∞ ≤ ε} (8)

The conceptual idea of the adversarial polytope is illustrated in Figure 3. This set provides us with all
the information we need about adversarial examples (at least those defined by the simple perturbations
defined above, which already encompass a powerful set). We will discuss this in more detail shortly,
but optimizing over the adversarial polytope can tell us, for instance, whether there is any example
within ε of x that can change the class of the example. It also forms the basis for developing a robust

1We can also potentially integrate other non-piecewise-linear activations such as sigmoids, though this
requires an approximation if we do want to use polyhedral methods, so we focus here on piecewise-linear
activations.
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Figure 3: Illustration of the adversarial polytope (i.e., the “reachable” region for a given allowable
perturbation).

optimization approach that guarantees that no adversarial examples (at least on the training data) are
possible.

Although it may not be apparent, Zε(x) is a connected polytope, a property which follows from
the fact that the entire function is composed of linear operations and the non-linear ReLU operator,
which is still defined by a (non-convex) polytope: for y = ReLU(x), the ReLU is defined by the set
(y = 0 ∧ x ≤ 0) ∨ (y = x ∧ x > 0)). Indeed, we can express the true adversarial polytope in terms
of the bilinear integer constraints

ẑi+1 = Wizi + bi, i = 1, . . . , k − 1

zi = ẑi · yi, i = 2, . . . , k − 1

z1 ≤ x+ ε

z1 ≥ x− ε
yi ∈ {0, 1}|zi|

(9)

where yi is a set of binary integer variables that encode “which side” of the ReLU the pre-ReLU
activations ẑi lies on. Although this is not in a form that can be easily handled by existing IP solvers
because of the bilinear term ẑi · yi, it can be put into an allowable form using a standard trick from
integer programming know as linearization. Specifically, supposing that we have some lower and
upper bounds `i, ui on the pre-ReLU activations ẑi (for the integer programming formulations, these
bounds can be very loose, so can be derived for instance from Lipschitz bounds of the network),
then the above set of constraints is equivalent to the mixed integer constraints (we don’t cover this
transformation in detail here, but it is a very common pattern in the IP literature)

ẑi+1 = Wizi + bi, i = 1, . . . , k − 1

ẑi ≤ ui · yi, i = 2, . . . , k − 1

zi ≥ ẑi, i = 2, . . . , k − 1

zi ≥ 0, i = 2, . . . , k = 1

zi ≤ ẑi − (1− yi) · `i
z1 ≤ x+ ε

z1 ≥ x− ε
yi ∈ {0, 1}|zi|.

(10)

It is simple to check that if yi,j = 0, this implies the corresponding zi,j = 0 (the constraints simplify
to zi,j ≥ 0 and zi,j ≤ 0); similarly, for yi,j = 1, the constraints imply that zi,j = ẑi,j . This form,
which now can be fed to off-the-shelf solvers, lets us reasonable about the exact nature of adversarial
examples for a classifier.

B.1 Queries within the adversarial polytope

The adversarial polytope allows us to formalize the notion of finding or preventing adversarial
examples in a classifier. Considering some datapoint/label pair (x, y), as well as a target class ytarg

(the class that we are going to attempt to fool the classifier into producing), we can determine whether
or not there exists an adversarial example (within ε `∞ norm of x) that makes the label ytarg more
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likely that y by solving the optimization problem

minimize (zk)y − (zk)ytarg , subject to zk ∈ Zε(x). (11)

If the optimal objective of this optimization problem is less than 0, then there does exist an adversarial
example that makes the label ytarg more likely than y; this follows immediately from the nature of the
optimization problem: if the objective is negative, then the value of the ytarg activation is greater than
the y activation, which guarantees the desired property. This optimization problem is a mixed integer
linear program, and (using the polytope formulation provided in (10)) can be solved by a number of
off-the-shelf integer programming solvers. Other questions can be answered as well: for instance if
we want to find the minimum-perturbation adversarial example possible, then we can solve the MILP

minimize ε, subject to (zk)y ≤ (zk)ytarg , zk ∈ Zε(x). (12)

Besides creating adversarial examples, the adversarial polytope can also be used to test the potential
adversarial nature of unknown examples. If we are provided an example x ∈ Rn as input to a
classifier, a natural question to ask is: is this potentially an adversarial example, e.g., an example
that has been crafted to fool our classifier. While it is difficult to answer this question in general,
in some cases it is possible to guarantee that a particular example is not adversarial, at least under
the set of allowable perturbations. Specifically, if we let ypred = argmaxi fi(x) be the predicted
class of the example, then we can check (using the approach above) whether there are adversarial
examples for all ytarg 6= ypred. If no such example exists, then we know that the network classifies
the sample x as being the same class for all ε perturbations, i.e., it could not be an instance of a
“good” example (which would be classified correctly) perturbed by ε to be classified incorrectly. This
allows us a method for guaranteeing that an example is not adversarial, even if we cannot do the
converse, guarantee an example that does cross classes within the adversarial polytope is actually
adversarial. However, because we know from experience that most deep classifiers are easy to fool, it
is likely that a typically-trained network will flag most inputs as being potentially adversarial; thus,
as we will address next, we need additional methods for training classifiers such that they are likely
to produce classifiers not sensitive to adversarial perturbations.

B.2 Robust optimization and learning robust classifier

Finally, we discuss how we can use the adversarial polytope to develop “hardened” classifiers (more)
robust to adversarial examples, based upon approaches in robust optimization. Robust optimization
in the context of linear classifiers has been used for some time within machine learning (e.g Xu et al.
[2009]). The basic idea is that, given a training set of xi, yi pairs, instead of simply minimizing the
loss at these data points, we minimize the loss at the worst location (i.e. that with the highest loss) in
an ε ball around each xi. Assuming a linear classifier hθ(x) = θTx (and binary classification, for
simplicity), this results in the optimization problem

minimize
θ

N∑
i=1

max
‖∆‖≤ε

`(θT (x+ ∆) · yi) (13)

Using the the fact that
max
‖∆‖≤ε

θT∆ = ε‖θ‖∗ (14)

where ‖ · ‖∗ denotes the dual norm, the robust optimization problem can be simplified as

minimize
θ

N∑
i=1

max
‖∆‖≤ε

`(θTx · yi + ‖θ‖∗). (15)

As mentioned above, recent work has highlighted the connection between adversarial classification
and robust optimization Madry et al. [2017], in particular attempting to solve the non-convex analogue
of the native min-max problem (13) by (projected) gradient descent over θ and ∆; this connection to
robust optimization was also discussed in the original adversarial example paper Goodfellow et al.
[2015], with the fast gradient sign method reducing to the same solution of this min-max problem for
a linear classifier.

To consider how to use the adversarial polytope to more exactly formulate the robust optimization
problem, we consider training a deep classifier with a multiclass hinge loss; other losses such as the
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Figure 4: Simple conceptual illustration of the (non-convex) adversarial polytope, and an outer convex
bound.

more common cross-entropy loss can be easily approximated, but the connection is more obvious
with this loss. Optimizing such a deep network is given by the optimization problem

minimize
θ

N∑
i=1

[1 + max
y 6=yi

fy(x)− fyi(x)]+. (16)

This loss is zero if the true class output fyi(x) is at least 1 larger than any alternative class output
fy(x) for y 6= yi, and scales linearly with the largest activation other than the true class otherwise.
Because the term fy(x) − fyi(x) is exactly the objective that we considered previously, we can
encode the min-max formulation of robust optimization by considering |y| − 1 different classification
problems (one for each alternative label y 6= yi) over the adversarial polytope

minimize
θ

N∑
i=1

max
‖∆‖∞≤ε

[1 + max
y 6=yi

fy(x+ ∆)− fyi(x+ ∆)]+

≡minimize
θ

N∑
i=1

[1 + max
y 6=yi

max
ẑ∈Zε

(xi) ((ẑk)y − (ẑk)yi)]+.

(17)

The inner maximization is precisely the optimization problem we considered earlier of finding the
most extreme point within the adversarial polytope. If this objective can be minimized with zero
training loss, then we are guaranteed that for every data point in the training set, no adversarial
example is possible (all points within the adversarial polytope are labeled correctly by the classifier).
Test points naturally have no such guarantee, but we can still use the method described above to test
whether or not they are potentially adversarial. And if empirical generalization patterns for deep
networks remain in this setting, it is likely that classifiers which don’t admit to adversarial examples
on the training set may well have similar properties on the test set (and we will demonstrate this
empirically ourselves shortly).

C Convex outer bounds on the adversarial polytope

Despite all the promise of the preceding section, there is a notable disadvantage that renders this
approach more a conceptual strategy rather than an actual tool: the fact that actually solving a mixed
binary integer program is an NP-hard task. Although it is well-appreciated that many instances of
reasonably-sized binary integer programs are empirically tractable via branch and cut algorithms, in
this case the optimization problem of interest has a number of binary variables equal to the number of
hidden units in the network, a number that can easily grow into the millions for large deep networks.
This is simply not tractable to solve via exact solutions to the integer program.

Instead, the key claim of this section is that we can instead consider a convex relaxation of the
adversarial polytope that is a strict outer bound. This concept is illustrated in Figure 4. That is,
it contains all points (and more) within the adversarial polytope, but is a convex set and so can
be optimized over efficiently (at least according to some definition of “efficient”, which will be a
major discussion point throughout this section). The key point is that because of this outer bound
property, we can perform the same tests for potential adversarial examples or develop the same robust
optimization techniques, which will provide identical guarantees. That is, if we look for the “most
adversarial” example over our outer approximation, and find that it does not change the predicted
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Figure 5: Illustration of the convex ReLU relaxation over the bounded set [`, u].

class of an example, then we are guaranteed that no actual adversarial example can change the class
either. Or we can develop robust classifiers that optimize over the worst-case loss within the outer
approximation, and these (assuming zero training loss) also will guarantee that the classifier does not
allow for adversarial examples. 2.

In this section we will first define our convex outer approximation to the adversarial polytope, and
discuss the optimization problem that arises when optimizing over it. However, although this is a
convex optimization problem and hence “tractable”, it is far from practically efficient to solve this
optimization problem exactly for large networks. Thus, in the next section we consider the dual
problem of optimization over the convex outer bound. By standard results in convexity, any dual
feasible solution represents a lower bound on minimization over the convex adversarial approximation,
and as we show, the dual problem itself can be formulated as a deep network that is effectively a
type of “adjoint system” of the original network, and which easily allows us to attain dual feasible
points; thus, we can employ simple gradient descent methods to optimize this dual problem, giving
us guaranteed lower bounds on the original optimization problem, even if we don’t solve the dual
problem to optimality. Next, we discuss how this dual framework can be fit into the context of
learning a robust classifier, showing that we can indeed solve the robust classifier learning problem
using the dual problem. Finally, we discuss methods for finding the necessary upper and lower bounds
needed for the convex outer approximation.

C.1 A convex outer bound

Note that the definition of our adversarial polytope involved two types of terms: the linear terms
ẑi+1 = Wizi + bi (which are convex), and the non-convex ReLU terms zi = max{0, ẑi}. Thus, to
form a convex relaxation of this set, we need to replace the ReLU terms by some relaxed version.

The idea that underlies our convex outer bound is quite simple, and indeed has been previously
considered in the context of searching over the actual adversarial polytope Ehlers [2017]; however, as
mentioned above, this previous work focused on the outer bound as a useful step in searching over
the true adversarial polytope for a given classifier, while we consider it here as an outer bound that we
will explicitly train over. However, we do emphasize that the formalism in this section at the single
activation level is virtually identical to that previously proposed in this prior work, though because
our full bound will also involve iterative computation of upper and lower bounds for intermediate
activations, our final outer bound ends up being quite different.

Suppose that for some pre-ReLU activation ẑ and adversarial polytope Zε(x) we have an upper and
lower bound ` and u over the allowable values for the activation (in the remainder of this paragraph,
for simplicity, we’ll let ẑ and z denote scalar values for a single activation, which we’ll later extend
elementwise to all activations). Note that these upper and lower bounds are guaranteed to exist,
as perturbation of ε of the input can only change the activations of the network by some bounded
amount (this is effectively the “adversarial” polytope but for inner activations of the network). Then
we can replace the non-convex ReLU constraint by it’s convex hull over the allowable upper and
lower bounds. This reduces to three cases:

1. If ` ≤ u ≤ 0, then we can replace the constraint z = max{0, ẑ} with the constraint z = 0,
as the ReLU will always lie in the zero region.

2Note, however, that the outer approximation is less useful for actually find adversarial examples: as we will
see, because elements in this polytope may not correspond to any actual path through the original network, it is
unclear what if anything can be said about the actual “examples” found via this method. However, given the
relative ease of finding versus preventing adversarial examples in modern deep architectures, this is not overly
bothersome
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2. Similarly, if 0 ≤ ` ≤ u, then we can replace the constraint with z = ẑ, as the ReLU will
always lie in the linear region.

3. In the remaining case (the “interesting” non-convex case), where ` < 0 < u, we can replace
the non-convex ReLU constraint with the convex hull over the ReLU function over the
domain [`, u]. This is shown in Figure 5, and the constraint set in this case can represented
by the three linear inequalities

z ≥ 0, z ≥ ẑ,−uẑ + (u− `)z ≤ −u`. (18)

With this relaxation as our starting point, we can formally define our relaxation of the adversarial
polytope, which we denote Z̃ [`,u]

ε (x) (here ` and u signify tensors of upper and lower bounds for
each activation in the network, which are naturally going to be different for different activations in
the network, and which we discuss how to compute shortly) as the following set of linear constraints

ẑi+1 = Wizi + bi, i = 1, . . . , k − 1

z1 ≤ x+ ε

z1 ≥ x− ε
zi,j = 0, i = 2, . . . , k − 1, j ∈ I−i
zi,j = ẑi,j , i = 2, . . . , k − 1, j ∈ I+

i

zi,j ≥ 0,

zi,j ≥ ẑi,j ,
− ui,j ẑi,j + (ui,j − `i,j)zi,j ≤ −ui,j`i,j

 i = 2, . . . , k − 1, j ∈ Ii

(19)

where I−i , I+
i , and Ii denote the set of activations in the ith layer that fit the categories 1, 2, and 3

above respectively. Intuitively, our convex outer approximation allows some flexibility in choosing
activations as subsequent layers of the network. For activations that can span over zero, the “post-
ReLU” activation need not exactly equal the ReLU of the input, but can lie anywhere between the
ReLU and the line connecting the maximum to minimum values; this extra freedom allows us to pick
examples that are “more adversarial” at later layers of the network, because they may not correspond
to any actual input fed through the network, but instead will correspond to allowing the intermediate
activations in a network to be adjusted to make the example as adversarial as possible.

At this point, we could theoretically use our convex outer approximation in lieu of the true adversarial
polytope, and obtain a tractable formulation to identify potential adversarial examples or learn a
robust classifier. However, two key challenges arise in this approach:

1. We need a way of optimizing over the adversarial polytope efficiently, that is, solving the
optimization problem

minimize cT ẑk, subject to ẑk ∈ Z̃ [`,u]
ε (x). (20)

Although this is now a convex linear program, it still has the number of variables equal to
the number of hidden units in the network, and standard solution methods for LPs would be
intractable for all but very small networks.

2. We need some way of finding the lower and upper bounds ` and u. Simple Lipschitz bounds
are extremely loose here (a fact we will demonstrate shortly), and provide no real use. We
need some alternative way of finding these bounds that will eventually provide a meaningful
convex outer bound.

C.2 Efficient optimization via the dual problem

In this section we deal with the first of the two problems above, and provide an efficient method
for solving (or more precisely, for bounding the optimal value of) the optimization problem above,
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written explicitly as

minimize cT ẑk
subject to ẑi+1 = Wizi + bi, i = 1, . . . , k − 1

z1 ≤ x+ ε

− z1 ≤ −x+ ε

zi,j = 0, i = 2, . . . , k − 1, j ∈ I−i
zi,j = ẑi,j , i = 2, . . . , k − 1, j ∈ I+

i

− zi,j ≤ 0,

ẑi,j − zi,j ≤ 0,

− ui,j ẑi,j + (ui,j − `i,j)zi,j ≤ −ui,j`i,j

 i = 2, . . . , k − 1, j ∈ Ii

(21)

The basic idea we propose is to consider the dual of this linear program. By standard results in convex
analysis, any feasible solution of the dual problem provides a guaranteed lower bound on the optimal
objective of the primal problem. Crucially, we will show that the dual problem can be characterized
via a “dual network”, similar to the backpropagation network through the original graph, but with
additional free parameters that can be optimized over with e.g. gradient descent. And although we
don’t expect to find an optimal solution to the dual problem in this manner, it will still provide the
guarantee we need.

In detail, we associate the following dual variables with each of the constraints

ẑi+1 = Wizi + bi ⇒ νi+1 ∈ R|ẑi+1|

z1 ≤ x+ ε⇒ ξ+ ∈ R|x|

−z1 ≤ −x+ ε⇒ ξ− ∈ R|x|

−zi,j ≤ 0⇒ µi,j ∈ R
ẑi,j − zi,j ≤ 0⇒ τi,j ∈ R

−ui,j ẑi,j + (ui,j − `i,j)zi,j ≤ −ui,j`i,j ⇒ λi,j ∈ R

(22)

where we note that can easily eliminate the dual variables corresponding to the zi,j = 0 and zi,j = ẑi,j
from the optimization problem, so we don’t define explicit dual variables for these; we also note that
µi,j , τi,j , and λi,j are only defined for i, j such that j ∈ Ii, but we keep the notation as above for
simplicity. With these definitions, the dual problem becomes

maximize −
k−1∑
i=1

νTi+1bi − (x+ ε)T ξ+ + (x− ε)T ξ− +

k−1∑
i=2

λTi (ui`i)

subject to νk = −c
νi,j = 0, j ∈ I−i
νi,j = (WT

i νi+1)j , j ∈ I+
i

(ui,j − `i,j)λi,j − µi,j − τi,j = (WT
i νi+1)j

νi,j = ui,jλi,j − µi

}
i = 2, . . . , k − 1, j ∈ Ii,

WT
1 ν2 = ξ+ − ξ−

λ, τ, µ, ξ+, ξ− ≥ 0

(23)

The key insight we highlight here is that the dual problem can also be written in the form of a deep
network, which provides a trivial way to find feasible solutions to the dual problem, which can then
be optimized over. Specifically, consider the constraints

(ui,j − `i,j)λi,j − µi,j − τi,j = (WT
i νi+1)j

νi,j = ui,jλi,j − µi.
(24)
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Note that the dual variable λ corresponds to the upper bounds in the convex ReLU relaxation, while
µ and τ correspond to the lower bounds z ≥ 0 and z ≥ ẑ respectively; by the complementarity
property, we know that at the optimal solution, these variables will be zero if the ReLU constraint is
non-tight, or non-zero if the ReLU constraint is tight. Because we cannot have the upper and lower
bounds be simultaneously tight (this would imply that the ReLU input ẑ would exceed its upper or
lower bound otherwise), we know that either λ or µ+ τ must be zero. This means that at the optimal
solution to the dual problem

(ui,j − `i,j)λi,j = [(WT
i νi+1)j ]+

τi,j + µi,j = [(WT
i νi+1)j ]−

(25)

i.e., the dual variables capture the positive and negative portions of (WT
i νi+1)j respectively. Com-

bining this with the constraint that
νi,j = ui,jλi,j − µi (26)

means that
νi,j =

ui,j
ui,j − `i,j

[(WT
i νi+1)j ]+ − α[(WT

i νi+1)j ]−, for j ∈ Ii (27)

for some 0 ≤ α ≤ 1 (this accounts for the fact that we can either put the “weight” of [(WT
i νi+1)j ]−

into µ or τ , which will or will not be passed to the next νi). This is exactly a type of leaky ReLU
operation, with a slope in the positive portion of ui,j/(ui,j − `i,j) (a term between 0 and 1), and a
negative slope anywhere between 0 and 1. Similarly, and more simply, note that ξ+ and ξ− simply
denote the positive and negative portions of WT

1 ν2, so we can replace these terms with an absolute
value in the objective. Finally, we note that although it is possible to have µi,j > 0 and τi,j > 0
simultaneously, this corresponds to an activation that is identically zero pre-ReLU (both constraints
being tight), and so is expected to be relatively rare. Putting this all together, and using ν̂ to denote
“pre-activation” variables in the dual network, we can write the dual problem in terms of the network

νk = −c
ν̂i = WT

i νi+1, i = k − 1, . . . , 1

νi,j =


0 j ∈ I−i
ν̂i,j j ∈ I+

iui,j
ui,j−`i,j [ν̂i,j ]+ − αi,j [ν̂i,j ]− j ∈ Ii

(28)

which we will abbreviate as ν = gθ,x(c, α) to emphasize the fact that −c acts as the “input” to the
network and α are per-layer inputs we can also specify (for only those activations in Ii), where ν
in this case is shorthand for all the νi and ν̂i activations. It is worth noting that this is exactly the
backpropagation for our original classifier (the ν variables are the backprop gradients, and the νi,j
terms are set to be either zero or ν̂i,j if we are on the zero or linear portions of the ReLU respectively)
except that the pass for the Ii variables has some additional free parameters: positive terms ν̂i,j are
weighted by ui,j

ui,j−`i,j and for negative terms we have the freedom to choose a weighting between
zero and one via the free parameter α.

The final objective we are seeking to optimize can also be written

J(ν) = −
k−1∑
i=1

νTi+1bi − (x+ ε)T [ν̂1]+ + (x− ε)T [ν̂1]− +

k−1∑
i=2

∑
j∈Ii

ui,j`i,j
ui,j − `i,j

[ν̂i,j ]+

= −
k−1∑
i=1

νTi+1bi − xT ν̂1 − ε‖ν̂1‖1 +

k−1∑
i=2

∑
j∈Ii

`i,j [νi,j ]+

(29)

Thus our final rewritten form of the dual problem is

maximize J(g(c, α)) (30)

where we optimize over the variables α, and where we can solve the problem using any standard
deep learning optimization method such as gradient descent (projected gradient descent, as there are
the constraints that 0 ≤ αi,j ≤ 1). Furthermore, the above consideration that it is unlikely for τi,j
and µi,j to simultaneously be 0, means that we expect α to attain values of either 0 or 1. This means
we can even apply methods like the fast gradient sign to simply observe the gradient w.r.t. αi,j at
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some intermediate value (e.g. 0.5), and then move it to either 0 or 1 depending on the sign of its
gradient, in order to provide a quick bound with just a single optimization iteration.

A crucial point here is that this formulation of the problem is not convex inα, and so in general we have
no guarantee of attaining optimal solutions. However, they key point is that because the dual network
always corresponds to feasible solutions of the dual problem, any solution will be a guaranteed lower
bound on the optimal objective of the primal. Thus, as long as the optimization procedure works well
in practice (which we know to be typically the case for deep network optimization), we generally
expect good performance from the method, i.e., that it will produce good bounds on the optimal
solution of the primal.

C.3 Determining activation bounds

We have thus far ignored the question of how to actually find bounds `i and ui on the pre-ReLU
activations in the network. The discussion above, however, motivates a simple approach to doing
so. We can simply build these bounds iteratively, layer by layer, using precisely the optimization
problem formulated above. For instance, suppose that we have determined bounds for layers 2, . . . , n;
then we can solve the above optimization problem with c = ei or c = −ei to find lower and upper
bounds respectively for the ith activation in the n+ 1 layer.3 Note again that because we solve this
optimization problem via the dual, these bounds are guaranteed to be strict, even if we don’t solve the
dual problem to optimality.

Naturally, solving two optimization problems per activation in the network (per example) would be a
daunting task, and in this section we present alternative approaches that still give guaranteed bounds
but which are much more efficient than this “brute force” approach. However, we fully admit that
currently this step is by far the least scalable element of our overall approach, and finding the proper
approximation schemes to scale to e.g. ImageNet-sized systems remains an open challenge.

The basis of our approximation approach here is precisely the fact we mentioned before: that even
suboptimal solutions of the dual optimization problem are guaranteed to give valid bounds. Thus,
instead of optimizing over α for each activation (and each example), we use a specific fixed feasible
solution for α that substantially simplifies the problem. In particular, choosing

αi,j =
ui,j

ui,j − `i,j
(31)

guarantees that the “slope” of the leaky ReLU for those elements j ∈ Ii is the same in the negative
portion as the positive portion, i.e., the operation is simply linear (note that 0 < αi,j < 1 since `i,j is
negative). Then the value of νi for all activations simultaneously (though still for a single example,
since ` and u are sample-dependent), is given by

ν̂i = WT
i Di+1W

T
i+1 . . . DnW

T
n

νi = Diν̂i
(32)

where again, we suppose that we have thus far already computed bounds up until layer n, and where
Di is a diagonal matrix with

(Di)jj =


0 j ∈ I−i
1 j ∈ I+

iui,j
ui,j−`i,j j ∈ Ii

. (33)

Now we consider computing the objective value J(ν) for this particular setting of ν. The two linear
terms in the objective

xT ν̂1 and
k−1∑
i=1

bTi νi+1 (34)

3Although we have discussed using the procedure to generate lower bounds, it can also trivially produce
upper bound on max cT ẑk by minimizing min−cT ẑk; if J is a lower bound on the minimization problem, then
−J will be an upper bound on the maximization problem.
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are both simple to handle in the above case: we simply perform the multiplication with νi left-to-right,
which corresponds simply to feeding the initial example and the bias terms through the network
(without bias terms).

The ε‖ν‖1 term in the objective is harder to deal with; because this is a non-linear term, in general
there is nothing to do except form the entire ν1 matrix explicitly, then compute the `1 norm of each
column. This still may not be entirely intractable: we can perform the matrix multiplication (32)
in any order we want, so if the input to the network is substantially smaller than the number of
activations at a particular layer, or if there is some “bottleneck” layer of limited dimension, such as a
PCA pre-processing of the data, then computing the full ν1 matrix may be reasonable. Alternatively,
when the linear operators are highly structured (such as convolutions), there will be a large amount
of sparsity that can be exploited, at least for networks that are not too deep; we could also use
random projection methods [Candes and Tao, 2006] to derive high-probability bounds on the norms
in question; or we can even use a optimization formulation to in turn bound this quantity via convex
duality. However, we leave a thorough investigation of these approaches for future work, and focus
here are cases where we simply compute the matrix exactly.

The same considerations hold true for the `i,j [νi,j ]+ terms in the objective: they are non-linear so
cannot easily be simplified. However, in this case we only need to compute these terms for i, j such
that j ∈ Ij , which is hopefully a manageably small subset of the total number of activations (if it is
not, the convex outer adversarial polytope is likely to be extremely large anyway).

With these considerations in mind, we propose a layer-by-layer method for generating all the `i and
ui bounds: we start by generating lower and upper bounds for z2 by the above procedure (which
actually reduces to just a simple norm bound in this case), use these bounds to generate upper and
lower bounds for z3, etc. Several terms can be reused through this computation, and we highlight a
reasonably efficient method for doing so (though still explicitly maintaining ν̂1 and the various νi,j
terms for j ∈ Ii) in Algorithm 1.

It is worth highlighting the connection between this incremental approach and standard norm bounds.
Note that for the first layer in the network, all terms effectively lie in the “linear” set I+

1 . Thus we
have ν̂1 = −WT

1 , and are upper and lower bounds J(ν) reduce to

`2 = xTWT
1 + bT1 − ε‖WT

1 ‖1
u2 = xTWT

1 + bT1 + ε‖WT
1 ‖1

(35)

where the first term is just the example x fed through the first layer of the network and the ε‖WT
1 ‖1

(where for a matrix this denotes the column-wise `1 norm) is a standard norm bound on how far a
bounded `∞ perturbation can reach. For later layers, the first two terms are replaced by

xT ν̂1 +

k−1∑
i=1

bTi νi+1 (36)

which again just denotes the example and bias terms fed through the network, whereas the later term
is replaced by

ε‖ν̂1‖1 = ε‖WT
1 D2W

T
2 . . . DnW

T
n ‖1 (37)

which is just the `1 norms of the actual product of weights and activation terms. This bound would
be sufficient if all activations lay in I− and I+, i.e. if the network could only be perturbed within a
linear region. But obviously in reality the perturbation can cause some activations to switch between
positive and negative (exactly the Ii set) and in these cases we pay an additional “cost” in our bounds
of `i,j [νi,j ]+. Remember that νi,j positive at the optimal solution corresponds to activations that
“cheat” by lying on the upper portion of the convex ReLU relaxation, and the bound nicely capture
the fact that it will be looser in this case.

As a final note, we highlight the fact that the incremental computation of all these bounds, followed
by some number of optimization steps for the final dual problem, can all be implemented within an
automatic differentiation library (this entire procedure really is what defines our actual outer bound
on the adversarial polytype). This means that the final lower bound on cT ẑk can be differentiated
with respect to the parameters of the network itself. Thus, in learning our classifier we will explicitly
minimize over the entire computation of this bound.
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Algorithm 1 Compute network bounds

input: Network parameters {Wi, bi}k−1
i=1 , data point x, ball size ε

// initialization
ν̂1 := −WT

1
γ1 := −bT1
`2 := xTWT

1 + bT1 − ε‖WT
1 ‖1 // ‖ · ‖1 for a matrix here denotes `1 norm of all columns

u2 := xTWT
1 + bT1 + ε‖WT

1 ‖1
for i = 2, . . . , k − 1 do

form I−i , I+
i , Ii; form Di as in (33)

// initialize new terms
νi,Ii := (Di)IiW

T
i

γi := −bTi
// propagate existing terms

νj,Ij := νj,IjDiW
T
i , j = 2, . . . , i− 1

γj := γjDiW
T
i , j = 1, . . . , i− 1

ν̂1 := ν̂1DiW
T
i

// compute bounds
`i := xT ν̂1 +

∑i
j=1 γi − ε‖ν̂1‖1 +

∑i
j=2 `i[νi,Ii ]+

ui := xT ν̂1 +
∑i
j=1 γi + ε‖ν̂1‖1 −

∑i
j=2 `i[−νi,Ii ]+

end for
output: bounds {`i, ui}k−1

i=2

C.4 Integration with robust optimization

Finally, we highlight how the above approach can be easily integrated within the robust classifier
learning objective we highlighted before. Recall that our robust optimization problem was given by

minimize
θ

N∑
i=1

[1 + max
y 6=yi

max
ẑ∈Zε

(xi) ((ẑk)y − (ẑk)yi)]+. (38)

Using the techniques from this section, we can bound this term as

min
θ

N∑
i=1

[1 + max
y 6=yi

max
ẑ∈Zε

(xi) ((ẑk)y − (ẑk)yi)]+ ≤ min
θ

N∑
i=1

[1 + max
y 6=yi

max
ẑ∈Z̃ε(xi)

((ẑk)y − (ẑk)yi)]+

≤ min
θ,α1:N

N∑
i=1

[1−max
y 6=yi

J(gθ,xi(ey − eyi , αi))]+

(39)

i.e., we can substitute the cost function from our dual network into the loss of our original optimization
problem, then solve simultaneously over θ and αi. Note that in this formulation, computing our dual
network ν = gθ,xi,ε(c, αi) implicitly also means computing the sequential bounds as described in
the previous section, and we use the subscripts xi, ε on g to emphasize the fact that these bounds
(and hence the dual network) depends on the actual example and ε. In practice, during training we
often forgo optimization over α and simply use the solution mentioned in the previous section to the
compute the upper and lower bounds when computing the final bound as well.

Lastly, although the hinge loss is useful for illustrating the connection between the loss function
and the optimization problem, in practice it is less effective than more common losses such as cross
entropy. Fortunately, for any convex monotonic loss function (which includes cross entropy), we can
use the bound

max
‖∆‖1≤ε

`(fθ(xi + ∆), yi) ≤ `(−J(gθ,xi(I − eyi1T , αi)), yi) (40)

to use more general loss functions, where −J(gθ,x(I − eyi1T , αi)) (i.e., the dual bound evaluated at
c = ey − eyi for all y) takes the place of the activations.
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C.5 Summary and discussion

The presentation in this section was quite lengthy, so it is useful to provide a summary of the end
result. The final outcome of our approach is that if we learn our network by solving the optimization
problem

minimize
θ,α

N∑
i=1

`(−J(gθ,xi,ε(I − eyi1T , αi)), yi) (41)

where gθ,xi is a network we compute using a few passes through the original network and its
backpropagation network (albeit with much larger “batch” sizes through the network, since in the
worst case we need to feed in a sample for each dimension of the input to compute the ` and
u bounds), then this provides a guaranteed bound on the adversarial loss we can suffer for any
adversarial perturbation with `∞ norm bounded by ε. The method also produces a guaranteed bound
on the adversarial error, by simply checking whether the yi coordinate of −J(gθ,xi,ε(I − eyi1T , αi))
is the largest (by the scaling with the input c = I − eyi1T , this coordinate is always zero, so it
amounts to checking whether all other coordinates are negative).

Although the method is based upon convex duality and linear programming, no recourse to an actual
linear programming solver is needed, nor is any iterative method for solving any inner optimization
problems; we simply optimize the entire (nonconvex) objective with stochastic gradient descent or
any other of its variants used in deep learning, and we get the guaranteed bound.

Finally, we note that all the bounds and guarantees we have discussed so far apply to the training data
(they can be evaluated on a test set, but like all test error, only if the test labels are known). What are
we to do with such networks in deployment, where we see new examples without knowledge of the
actual label? Fortunately, by the transitivity of adversarial examples, we can use the same technique
to determine whether the example might be adversarial. Specifically, given a new example x we
compute the network prediction ŷ = f(x), then determine whether there is any potential adversarial
example for this predicted label within ε. If not, then the example must not be adversarial, because
there is no point within ε that changes the class prediction (i.e., there couldn’t be a “normal” input
ε away from this possibly adversarial example). Obviously, this approach may sometimes classify
non-adversarial inputs as potentially adversarial, but it has zero false negatives, in that it will never
fail to flag an adversarial example. Given the challenge in even defining adversarial examples in
general, this seems to be as strong a guarantee as is currently possible.

D Experimental results

Here we present experiments on small-scale problems designed to demonstrate the approach. Al-
though the method does not yet scale to ImageNet-sized classifiers, we do demonstrate the approach
on a simple convolutional network applied to MNIST, illustrating that the method can apply to
approaches beyond fully-connected networks with very small sizes (which represent the state of the
art for most existing work on neural network verification). Scaling challenges were discussed briefly
above, and we highlight them more below. As mentioned above, code for the examples included in
the paper is available at http://github.com/locuslab/convex_adversarial.

D.1 2D toy domain

Our first set of experiments involves a simple domain where both the input and output spaces of the
network are two dimensional, so can be easily visualized. Specifically, we consider a 2-100-100-100-
100-2 fully connected network.

Visualizations of the convex outer adversarial polytope To begin, we consider some simple cases
of visualizing the outer approximation to the adversarial polytope for random networks. Because the
output space is two-dimensional we can easily visualize the polytopes in the output layer, and because
the input space is two dimensional, we can easily cover the entire input space densely to enumerate
the true adversarial polytope. In this experiment, we initialized the weights of the all layers to be
normalN (0, 1/

√
nin) and biases normalN (0, 1) (due to scaling, the actual absolute value of weights

is not particularly important except as it relates to ε). Although obviously not too much should be
read into these experiments with random networks, the main takeaways are that 1) for “small” ε, the
outer bound is an extremely good approximation to the adversarial polytope; 2) as ε increases, the

17

http://github.com/locuslab/convex_adversarial


1.810 1.815 1.820 1.825 1.830 1.835 1.840 1.845 1.850
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ẑ
k
,2

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85
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Figure 6: Illustrations of the true adversarial polytope (gray) and our convex outer approximation
(green) for a random 2-100-100-100-100-2 network withN (0, 1/

√
n) weight initialization. Polytopes

are shown for ε = 0.05 (top row), ε = 0.1 (middle row), and ε = 0.25 (bottom row).

bound gets substantially weaker. This is to be expected: for small ε, the number of elements in I
will also be relatively small, and thus additional terms that make the bound lose are expected to be
relatively small (in the extreme, when no activation can change, the bound will be exact, and the
adversarial polytope will be a convex set). However, as ε gets larger, more activations enter the set
I, and the available freedom in the convex relaxation of each ReLU increases substantially, making
the bound looser. Naturally, the question of interest is how tight this bound is for networks that are
actually trained to minimize the robust loss, which we will look at shortly.

Comparison to naive layerwise bounds One additional point is worth making in regards to the
bounds we propose. It would also be possible to achieve a naive “layerwise” bound by iteratively
determining absolute allowable ranges for each activation in a network (via the simple norm bound
mentioned above), then for future layers, assuming each activation can vary arbitrarily within this
range. This provides a simple iterative formula for computing layer-by-layer absolute bounds on the
coefficients, and similar techniques have been used e.g. in Parseval Networks [Cisse et al., 2017] to
produce more robust classifiers (albeit there considering `2 perturbations instead of `∞ perturbations,
which likely are better suited for such an approach). Unfortunately, these naive bounds are extremely
loose for multi-layer networks (in the first hidden layer, they naturally match our bounds exactly).
For instance, for the adversarial polytope shown in Figure 6 (top left), the actual adversarial polytope
is contained within the range

ẑk,1 ∈ [1.81, 1.85], ẑk,2 ∈ [−1.33,−1.29] (42)

with the convex outer approximation mirroring it rather closely. In contrast, the layerwise bounds
produce the bound:

ẑk,1 ∈ [−11.68, 13.47], ẑk,2 ∈ [−16.36, 11.48]. (43)
Such bounds are essentially vacuous in our case, which makes sense intuitively. The naive bound has
no way to exploit the “tightness” of activations that lie entirely in the positive space, and effectively
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Figure 7: Illustration of classification boundaries resulting from standard training (left) and robust
training (right) with `∞ balls of size ε = 0.03 (shown in figure). The standard training procedure
allows for some points within ball to have incorrect class labels, while the robust training does not
(and the training procedure provides a bound verifying this fact).
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Figure 8: (left) Training curves for the 2D robust adversarial problem, where each iteration denotes
a step of the Adam optimizer. (right) Illustration of the actual adversarial polytope and the convex
outer approximation for one of the training points after the robust optimization procedure.

replaces the convex ReLU approximation with a (larger) box covering the entire space. Thus, such
bounds are not of particular use when considering robust classification.

Robust classifier training Finally, we consider training a simple robust classifier in our 2D exam-
ple. Specifically, we incrementally randomly sample 50 points within the [0, 1] xy-plane, at each
point waiting until we find a sample that is at least 0.08 away from other points via `∞ distance,
and assign each point a random label. We then attempt to learn a robust classifier that will correctly
classify all points with an `∞ ball of ε = 0.03. Note that there is no notion of generalization here, we
are just evaluating the ability of the learning approach to fit a classification function robustly.

Figure 7 shows the resulting classifiers produced by standard training over just the data points
themselves (left) and robust training via our method (right). As expected, the standard training
approach results in points that are classified differently somewhere within their `∞ ball of radius
ε = 0.03 (this is exactly and adversarial example for the training set). In contrast, also as expected
(because our procedure is able to attain zero robust error), the robust training method provides a
classifier that is guaranteed to classify all points within the balls correctly. We use the Adam optimizer
[Kingma and Ba, 2015] (over the entire batch of samples) with a learning rate of 0.001.
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Figure 9: Training progress for our method applied to a simple ConvNet architecture on MNIST.
Robust error and loss indicate provable upper bounds on the loss/error achievable by any adversarial
perturbation with `∞ norm bounded by ε = 0.1.

Figure 8 (left) shows the training progress of the standard and robust learning processes on this
example. Of note is the fact that the robust loss seems empirically “harder” to minimize, which is not
particularly surprising since it effectively always looks for (a bound on) the worse case loss within
the entire `∞ ball around the example. However, the network is able to eventually achieve zero robust
error, which is expected given the fact that the data points can indeed be separated perfectly with a
nonlinear classifier. Finally, it is of some interest to see what the true adversarial polytope for the
examples in this data set looks like versus the convex approximation, evaluated at the solution of the
robust optimization problem. Figure 8 (right) shows one of these figures, highlighting the fact that for
the final network weights and choice of epsilon, the outer bound is empirically quite tight in this case.

D.2 MNIST ConvNet

Finally, we present results on producing a provably robust classifier on the MNIST data set. Specif-
ically, we consider a ConvNet architecture that includes two convolutional layers, with 16 and 32
channels (each with a stride of two, to decrease the resolution by half without requiring max pooling
layers), and two fully connected layers stepping down to 100 and then 10 (the output dimension)
hidden units, with ReLUs following each layer except the last. That is, the network has the form:

x⇒ Conv_16x4x4,s=2⇒ ReLU⇒ Conv_16x4x4,s=2⇒ ReLU⇒ FC100⇒ ReLU⇒ y. (44)

This is a reasonable if fairly small network for MNIST: training the network using standard training
achieves a test error of about 1.2%. Adding layers like batch normalization and dropout easily push
the error below 1%, but since we don’t integrate these yet into our robust framework, we consider
just the naive network. We use the Adam optimizer [Kingma and Ba, 2015] with a learning rate of
0.001 (the default option) with no additional hyperparameter selection.

Figure 9 shows the training progress using our procedure with a robust softmax loss function and
ε = 0.1. The “robust error” and “robust loss” here are our bounds on the robust error and loss; that is,
we know that any norm-bounded adversarial technique will not be able to achieve loss or error that
is any higher, though in practice it could be substantially lower as well. The final classifier after 20
epochs reaches a test error of 2.93% with a robust test error of 8.39%.

To see where other techniques would stand, we also tested our network against two common classes
of attacks: the fast gradient sign method Goodfellow et al. [2015], and the projected gradient descent
approach Madry et al. [2017].4 For a traditionally-trained classifier (with 1.2% test error) the FGSM
approach results in 39.7% error, while PGD results in 94.0% error. On the classifier trained with our
method, however, we only achieve 2.93% test error, but FGSM and PGD only achieve errors of 5.8%
and 6.2% respectively (both, naturally, below our bound of 8.4%). These results are summarized in
Table 2.

While this is by no means state of the art performance on standard MNIST (if such a thing really has
any meaning at this point, but it is certainly valid to say that these results are decidedly subpar as far

4For PGD, as in Madry et al. [2017] we use `∞ ball gradient descent and 100 iterations of step size 0.01,
which was sufficient for convergence.
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Network Non-adversarial FGSM PGD Robust Bound
Standard training 1.2% 39.7% 94.0% 100%
Robust training 2.9% 5.8% 6.2% 8.4%

Table 2: Adversarial errors for a traditionally-trained and our robustly-trained classifier on the MNIST
test set.

as generic MNIST classification goes), a few points stand out. First, this is by far the largest provably
verified network we are currently aware of, and 8% error represents a reasonable performance
given that it is against any adversarial attack strategy; the only other such bound we are aware of,
from the very recent work mentioned previously Anonymous [2018], provides a guaranteed bound
of 35% error. Second, in the example above training and testing error/loss are still tracking quite
closely, suggesting that we should be able to further improve performance by simply using larger
models. Therein lies the catch, though: the current model took 10 hours to train for 20 epochs on
a Titan X (Maxwell) GPU. This is between two and three orders of magnitude more costly than
training the naive network (though the naive network, of course, is trivially susceptible to simple
adversarial attacks like the PGD method). Building robust models within the framework to scale
to e.g. ImageNet-sized image classification problems remains a challenging task. But because the
approach is not combinatorial in its complexity, we believe it also represents a much more feasible
approach than those based upon integer programming or satisfiability, which seem highly unlikely to
ever scale to such problems. Thus, we believe the current performance represents a substantial step
forward in research on adversarial examples in deep networks.
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