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Abstract
Neural networks are vulnerable to adversarial examples and researchers have proposed many
heuristic attack and defense mechanisms. We take the principled view of distributionally
robust optimization, which guarantees performance under adversarial input perturbations.
By considering a Lagrangian penalty formulation of perturbation of the underlying data
distribution in a Wasserstein ball, we provide a training procedure that augments model
parameter updates with worst-case perturbations of training data. For smooth losses, our
procedure provably achieves moderate levels of robustness with little computational or
statistical cost relative to empirical risk minimization. Furthermore, our statistical guarantees
allow us to efficiently certify robustness for the population loss. We match or outperform
heuristic approaches on supervised learning tasks.

1 Introduction
Consider the classical supervised learning problem, where we minimize the expected loss EP0 [`(θ;Z)] over a
parameter θ ∈ Θ, where ` is a loss and Z ∼ P0 is a distribution on a space Z . In many systems, we desire
robustness to changes in P0, either from covariate shifts, changes in the underlying domain [3], or adversarial
attacks [12, 18]. For deep networks in performance-critical systems (e.g. perception for self-driving cars
or automated detection of tumors), model failure leads to life-threatening situations; in these systems, it is
irresponsible to deploy models whose robustness we cannot certify.
However, recent works have shown that neural networks are vulnerable to adversarial examples; seemingly
imperceptible perturbations to data can lead to misbehavior of the model, such as misclassifications of the
output [12, 18, 21, 22]. Subsequently, many researchers have proposed adversarial attack and defense mecha-
nisms [27, 23, 24, 25, 28, 8, 20, 13]. While these works provide an initial foundation for adversarial training,
there are no guarantees on whether proposed heuristic attacks can find the most adversarial perturbation and
whether there is a class of attacks such defenses can successfully prevent. On the other hand, verification of
deep networks using SMT solvers [16, 17, 14] provides formal guarantees on robustness but is NP-hard in
general; this approach requires prohibitive computational expense even on small networks.
We take the perspective of distributionally robust optimization and provide an adversarial training proce-
dure with provable guarantees on its computational and statistical performance. We postulate a class P of
distributions around the data-generating distribution Z ∼ P0 and consider the problem

minimize
θ∈Θ

sup
P∈P

EP [`(θ;Z)]. (1)

The choice of P influences robustness guarantees and computability; we develop robustness sets P with
computationally efficient relaxations that apply even when ` is non-convex. We provide an adversarial training
procedure that, for smooth `, enjoys convergence guarantees similar to non-robust approaches while certifying
performance for the worst-case population loss supP∈P EP [`(θ;Z)]. This smoothness can be obtained in
standard deep architectures with exponential linear units (ELU’s) [10]. A simple Tensorflow implementation
of our method takes 5–10× as long as stochastic gradient methods for empirical risk minimization (ERM).
Let us overview our approach briefly. Let c : Z × Z → R+ ∪ {∞}, where c(z, z0) represents the “cost” for
an adversary to perturb z0 to z (we typically use c(z, z0) = ‖z − z0‖2p for p ≥ 1). We consider the region
P = {P : Wc(P, P0) ≤ ρ}, a ρ-neighborhood of the distribution P0 under the Wasserstein metric Wc(·, ·)
(formally defined in Appendix A). The formulation (1), however, is still intractable for arbitrary robustness
ρ—at least for deep networks or other complex models. Instead, we consider its Lagrangian relaxation for a
fixed penalty γ ≥ 0, giving the following reformulation whose proof we defer to Appendix A:

minimize
θ∈Θ

{
F (θ) := sup

P
{EP [`(θ;Z)]− γWc(P, P0)} = EP0 [φγ(θ;Z)]

}
(2a)
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Algorithm 1: Distributionally robust optimization with adversarial training

INPUT: Sampling distribution P0, constraint sets Θ and Z , stepsize sequence {αt > 0}T−1
t=0

for t = 0, . . . , T − 1 do
Sample zt ∼ P0 and find an ε-approximate maximizer ẑt of `(θt; z)− γc(z, zt)
θt+1 ← ProjΘ(θt − αt∇θ`(θt; ẑt))

where φγ(θ; z0) := sup
z∈Z
{`(θ; z)− γc(z, z0)} . (2b)

That is, we have replaced the usual `(θ;Z) by the robust surrogate φγ(θ; z), which adversarially perturbs data
z modulated by γ. We typically solve the problem (2) with P0 replaced by the empirical distribution P̂n.
The key feature of the penalty problem (2) is that moderate levels of robustness are achievable at essentially no
computational or statistical cost for smooth losses `. Specifically, for large enough penalty γ (by duality, small
enough robustness ρ), the function z 7→ `(θ; z)− γc(z, z0) in the robust surrogate (2b) is strongly concave
and hence easy to optimize if `(θ, z) is smooth in z. As a consequence, the stochastic gradient method applied
to problem (2) has similar convergence guarantees as for non-robust methods (ERM). In Section 3, we give a
certificate of robustness showing that we are approximately protected against all distributional perturbations
satisfying Wc(P, P0) ≤ ρ̂n, where ρ̂n is the achieved robustness for the empirical objective. We upper-bound
the population worst-case scenario supP :Wc(P,P0)≤ρ̂n EP [`(θ;Z)] by an efficiently computable empirical
counterpart. These results suggest advantages of networks with smooth activations rather than ReLUs. We
experimentally verify our results in Section 4 and show that we match or achieve state-of-the-art performance
on a variety of adversarial attacks.

2 Proposed approach
Our approach is motivated by the following insight: assume z 7→ `(θ; z) is smooth, i.e. ∇z`(θ; z) is L-
Lipschitz for some L. For c : Z ×Z → R+ strongly convex in its first argument, a Taylor expansion yields

`(θ; z′)− γc(z′, z0) ≤ `(θ; z)− γc(z, z0) +
〈
∇z(`(θ; z)− γc(z, z0)), z′ − z

〉
+
L− γ

2

∥∥z − z′∥∥2

2
. (3)

For γ ≥ L this is the first-order condition for concavity of z 7→ (`(θ; z)− γc(z, z0)). When ` is smooth and
γ is large enough, the surrogate (2b) is a strongly-concave optimization. Leveraging this insight, instead of
prescribing the amount ρ of robustness, we focus on the (empirical counterpart to the) penalty problem (2).
We now develop stochastic gradient-type methods for the relaxed robust problem (2), making clear the
computational benefits of relaxing the strict robustness requirements of formulation (1). We begin with
assumptions we require, which roughly quantify the amounts of robustness we can provide.
Assumption A. c : Z × Z → R+ is continuous and for each z ∈ Z , c(·, z) is 1-strongly convex w.r.t. ‖·‖.
To guarantee that the robust surrogate (2b) is tractably computable, we require a few smoothness assumptions.
Let ‖·‖∗ be the dual norm to ‖·‖; we overload notation with ‖·‖ on Θ and Z , though the specific norm is clear
from context.
Assumption B. The loss ` : Θ×Z → R satisfies the Lipschitzian smoothness conditions∥∥∇θ`(θ; z)−∇θ`(θ′; z)∥∥∗ ≤ Lθθ ∥∥θ − θ′∥∥ , ∥∥∇z`(θ; z)−∇z`(θ; z′)∥∥∗ ≤ Lzz

∥∥z − z′∥∥ ,∥∥∇θ`(θ; z)−∇θ`(θ; z′)∥∥∗ ≤ Lθz ∥∥z − z′∥∥ , ∥∥∇z`(θ; z)−∇z`(θ′; z)∥∥∗ ≤ Lzθ

∥∥θ − θ′∥∥ .
These properties guarantee both (i) the smoothness of the robust surrogate φγ (see Lemma 1 in Appendix B)
and (ii) its efficient computability. Since we only perturb features (and not labels) in supervised learning
settings, we can easily modify these assumptions to work with cost cx defined on features (see Appendix F).
The well-behavedness of φγ motivates Algorithm 1, a stochastic-gradient approach for the penalty problem (2).
The benefits of Lagrangian relaxation become clear here: for `(θ; z) smooth in z and γ large enough, gradient
ascent on `(θt; z)− γc(z, zt) in z converges linearly and we can compute (approximate) ẑt efficiently.
When ` is nonconvex in θ2, the following theorem guarantees convergence to a stationary point of problem (2)
at rate 1/

√
T when γ ≥ Lzz. Recall that F (θ) = EP0 [φγ(θ;Z)] is the robust surrogate objective for the

Lagrangian relaxation (2). We prove the theorem in Section B.
Theorem 1 (Convergence of Nonconvex SGD). Let Assumptions A and B hold with the `2-norm and let Θ =

Rd. Let ∆F ≥ F (θ0)− infθ F (θ). Assume E[‖∇F (θ)−∇θφγ(θ, Z)‖22] ≤ σ2, and take the constant stepsize

α =
√

2∆F

Lσ2T , with L = Lθθ + LθzLzθ

γ−Lzz
. Algorithm 1 satisfies 1

T

∑T
t=1 E

[
‖∇F (θt)‖22

]
− 2L2

θz

γ−Lzz
ε ≤ σ

√
8L∆F

T .

2When ` is convex in θ and γ is large enough that z 7→ (`(θ; z)− γc(z, z0)) is concave for all (θ, z0) ∈ Θ×Z , we
have a stochastic monotone variational inequality, which is efficiently solvable [15, 9] at rate 1/

√
T .
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The condition E[‖∇F (θ)−∇θφγ(θ, Z)‖22] ≤ σ2 holds (to within a constant factor) whenever ‖∇θ`(θ, z)‖2 ≤
σ for all θ, z. Theorem 1 shows that Algorithm 1 achieves the same rates of convergence on the penalty
problem (2) as in standard smooth non-convex optimization [11]. Key to this result is that ` is smooth in z: the
inner supremum (2b) is NP-hard to compute for non-smooth deep networks (see Lemma 2 in Section C for a
proof with ReLU’s). Replacing ReLU’s with sigmoids or ELU’s [10] allows us to apply Theorem 1, making
distributionally robust optimization tractable for deep learning.

3 Robustness Certificate
From results in the previous section, Algorithm 1 provably learns to protect against adversarial perturbations
on the training dataset. Now, we show that this procedure generalizes, allowing us to prevent attacks on the test
set. Our subsequent results hold uniformly over the space of parameters θ ∈ Θ, including θWRM, the output of
the stochastic gradient descent procedure in Section 2. Our main result gives a data-dependent upper bound on
the population worst-case objective supP :Wc(P,P0)≤ρ EP [`(θ;Z)] ≤ γρ+ EP̂n [φγ(θ;Z)] +O(1/

√
n) for all

θ ∈ Θ and arbitrary level of robustness ρ; this bound is optimal for ρ = ρ̂n, the level of robustness achieved
for the empirical distribution by solving (2). Our bound is efficiently computable and hence certifies a level of
robustness for the worst-case population objective.
To make this rigorous, fix γ > 0, and consider the worst-case perturbation, typically called the transportation
map or Monge map [30], Tγ(θ; z0) := argmaxz∈Z{`(θ; z)− γc(z, z0)}. Under our assumptions, it is easy
to compute Tγ whenever γ ≥ Lzz. Letting δz denote the point mass at z, Proposition 3 (or Kantorovich
duality [30, Chs. 9–10]) shows the empirical maximizers of the Lagrangian formulation (11) are attained by
P ∗n(θ) := argmaxP

{
EP [`(θ;Z)]− γWc(P, P̂n)

}
and

P ∗n(θ) =
1

n

n∑
i=1

δTγ(θ,Zi) and ρ̂n(θ) := Wc(P
∗
n(θ), P̂n) = EP̂n [c(Tγ(θ;Z), Z)]. (4)

The equalities (4) show that EP∗n(θ)[`(θ;Z)] is efficiently computable, thereby providing a data-dependent
performance guarantee for the worst-case population loss.
Our bound relies on the usual covering numbers for the model class F = {`(θ; ·) : θ ∈ Θ} as the notion of
complexity [e.g. 29], so, despite the infinite-dimensional problem (2), we retain the same uniform convergence
guarantees typical of empirical risk minimization. Recall that for a set V , a collection v1, . . . , vN is an
ε-cover of V in norm ‖·‖ if for each v ∈ V , there exists vi such that ‖v − vi‖ ≤ ε. The covering number
of V with respect to ‖·‖ is N(V, ε, ‖·‖) := inf {N ∈ N | there is an ε-cover of V with respect to ‖·‖}. For
F := {`(θ, ·) : θ ∈ Θ} equipped with the L∞(Z) norm ‖f‖L∞(Z) := supz∈Z |f(z)|, we state our results in
terms of ‖·‖L∞(Z)-covering numbers of F . To ease notation, we let

εn(t) := γb1

√
M`

n

∫ 1

0

√
logN(F ,M`ε, ‖·‖L∞(Z))dε+ b2M`

√
t

n
where b1, b2 are numerical constants.
We are now ready to state the main result of this section whose proof we given in Section D.1. We first show
from the duality result (11) that we can provide an upper bound for the worst-case population performance for
any level of robustness ρ. For ρ = ρ̂n(θ) and θ = θWRM, this certificate is (in a sense) tight as we see below.
Theorem 2. Assume that |`(θ; z)| ≤ M` for all θ ∈ Θ and z ∈ Z . Then, for a fixed t > 0 and numerical
constants b1, b2 > 0, with probability at least 1− e−t, simultaneously for all θ ∈ Θ, and ρ ≥ 0,

sup
P :Wc(P,P0)≤ρ

EP [`(θ;Z)] ≤ γρ+ EP̂n [φγ(θ;Z)] + εn(t). (5)

In particular, if ρ = ρ̂n(θ) then with probability at least 1− e−t, for all θ ∈ Θ

sup
P :Wc(P,P0)≤ρ̂n(θ)

EP [`(θ;Z)] ≤ sup
P :Wc(P,P̂n)≤ρ̂n(θ)

EP [`(θ;Z)] + εn(t). (6)

A key consequence of the bound (5) is that γρ + EP̂n [φγ(θ;Z)] certifies robustness for the worst-case
population objective at any level ρ. Letting θ = θWRM, we expect the certificate (5) to be tight since θWRM

was choosen to be close to the minimizer of EP̂n [φγ(θ;Z)]. In particular, when ρ = ρ̂n(θ), duality shows
that EP̂n [φγ(θ;Z)] + γρ̂n(θ) = supP :Wc(P,P̂n)≤ρ̂n(θ) EP [`(θ;Z)] = EP∗n(θ)[`(θ;Z)]. (See Section D.1 for a
proof of these equalities.) This certificate is easy to compute via expression (4): the transportation mappings
T (θ, Zi) are efficiently computable for large enough γ, as noted in Section 2, and ρ̂n = Wc(P

∗
n , P̂n) =

EP̂n [c(T (θ, Z), Z)]. See Corollary 1 for a concrete adaptation of Theorem 2 to Lipschitz functions. In
Appendix D we also show that adversarial perturbations of the training data generalize.

4 Experiments
We consider a standard benchmark: training a neural network classifier on the MNIST dataset. We compare
performance of our method (WRM) with ERM and models trained with other heuristic adversarial training
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Figure 1. PGM and Wasserstein attacks on the MNIST dataset (C2 = 9.21). (a) shows test misclassification
error vs. adversarial perturbation level εadv for the 2-norm PGM attack. (b) and (c) shows stability of the loss
surface. (b) plots average distance of the perturbed distribution ρ̂test for a given γadv. The vertical bar in (b)
indicates the γ we use for training WRM, the bar in (a) is the corresponding ε. (c) visualizes the smallest WRM
perturbation (largest γadv) necessary to make a model misclassify a datapoint. More experiments in Appendix E.

procedures: the fast-gradient method (FGM) [12], its iterated variant (IFGM) [18], and the projected-gradient
method (PGM) [20]. PGM augments stochastic gradient steps for the parameter θ with projected gradient
ascent over x 7→ `(θ;x, y), iterating (for data point xi, yi)

∆xt+1
i (θ) := argmax

‖η‖p≤ε
{∇x`(θ;xti, yi)T η} and xt+1

i := ΠBε,p(xti)

{
xti + αt∆x

t
i(θ)

}
(7)

for t = 1, . . . , Tadv, where Π denotes projection onto Bε,p(xi) := {x : ‖x− xi‖p ≤ ε}. We use the squared
Euclidean cost for the feature vectors cx(x, x′) := ‖x− x′‖22 (and total cost c(z, z′) := ‖x − x′‖22 +∞ ·
1 {y 6= y′}) for WRM and p = 2 for FGM, IFGM, PGM training in all experiments; we test against adversarial
perturbations with respect to the norms p = 2. We use Tadv = 15 iterations for all iterative methods
(IFGM, PGM, and WRM) in training and attacks. Larger adversarial budgets correspond to smaller γ for
WRM and larger ε for other models. Our network consists of 8 × 8, 6 × 6, 5 × 5 convolutional filter layers
with ELU activations followed by a fully connected layer and softmax output. We train our method with
γ = .04EP̂n ‖X‖2, and for other methods we choose ε as the achieved level of robustness by WRM:3

ε2 = ρ̂n(θWRM) = Wc(P
∗
n(θWRM), P̂n) = EP̂n [c(T (θWRM, Z), Z)]. (8)

In the figures, we scale the budgets 1/γadv and εadv for the adversary with C2 := EP̂n ‖X‖2 = 9.21. All
methods achieve at least 99% test-time accuracy on natural examples, implying there is little penalty for the
level of robustness (ε and γ) used for training the adversarial models.
It is thus important to distinguish the methods’ abilities to combat attacks. We test performance of the five
methods under PGM attacks (7) with respect to the 2-norm. In Figure 1(a), all adversarial methods outperform
ERM, and WRM offers more robustness even with respect to these PGM attacks. Training with the Euclidean
cost still provides robustness to∞-norm attacks, which we show in Appendix E.1.
Next we study stability of the loss surface with respect to perturbations to inputs. First, consider the distance
to adversarial examples under the models θ = θERM, θFGM, θIFGM, θPGM, θWRM,

ρ̂test(θ) := EP̂test
[c(Tγadv(θ, Z), Z)], (9)

where P̂test is the test distribution, c(z, z′) := ‖x − x′‖22 +∞ · 1 {y 6= y′} as before, and Tγadv(θ, Z) =
argmaxz{`(θ; z)− γadvc(z, Z)} is the adversarial perturbation of Z (Monge map) for the model θ. We note
that small values of ρ̂test(θ) correspond to small magnitudes of∇z`(θ; z) in a neighborhood of the nominal
input, which ensures stability of the model. Figure 1(b) shows that ρ̂test differs by orders of magnitude between
the training methods; the trend is nearly uniform over all γadv, with θWRM being the most stable. Thus, we see
that our adversarial-training method defends against gradient-exploiting attacks by reducing the magnitudes of
gradients near the nominal input. The vertical bars indicate the perturbation level used for training the FGM,
IFGM, and PGM models as well as the estimated radius

√
ρ̂n(θWRM).

In Figure 1(c) we provide a qualitative picture by adversarially perturbing a single test datapoint until the
model misclassifies it. Specifically, we again consider WRM attacks and we decrease γadv until each model
misclassifies the input. The original label is 8, whereas on the adversarial examples IFGM predicts 2, PGM
predicts 0, and the other models predict 3. WRM’s “misclassifications” appear consistently reasonable to the
human eye (see Appendix E.2 for examples of other digits); WRM defends against gradient-based attacks by
learning a representation that makes gradients point towards inputs of other classes. Overall, Figure 1 depicts
our method’s defense mechanisms to gradient-based attacks: creating a more stable loss surface by reducing
the magnitude of gradients and improving their interpretability.

3For this γ, φγ(θWRM; z) is strongly concave for 98% of the training data.
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A Wasserstein Robustness and Duality

Wasserstein distances define a notion of closeness between distributions. Let Z ⊂ Rm be convex, and let
(Z,A, P0) be a probability space. Let the transportation cost c : Z ×Z → [0,∞) be nonnegative, continuous,
and convex in its first argument and satisfy c(z, z) = 0. For example, for a differentiable convex h : Z → R,
the Bregman divergence c(z, z0) = h(z)−h(z0)−〈∇h(z0), z − z0〉 satisfies these conditions. For probability
measures P and Q supported on Z , let Π(P,Q) denote their couplings, meaning measures M on Z2 with
M(A,Z) = P (A) and M(Z, A) = Q(A). The Wasserstein distance between P and Q is

Wc(P,Q) := inf
M∈Π(P,Q)

EM [c(Z,Z ′)].

For ρ ≥ 0 and data generating distribution P0, we consider the Wasserstein form of the robust problem (1),
with P = {P : Wc(P, P0) ≤ ρ}, and its Lagrangian relaxation (2) with γ ≥ 0.
The following duality result, which we prove in Appendix A.1, gives the equality (2) and an analogous result
for the worst-case problem (1).

Proposition 3. Let ` : Θ × Z → R and c : Z × Z → R+ be continuous. Let φγ(θ; z0) =
supz∈Z {`(θ; z)− γc(z, z0)} be the robust surrogate (2b). For any distribution Q and any ρ > 0,

sup
P :Wc(P,Q)≤ρ

EP [`(θ;Z)] = inf
γ≥0

{
γρ+ EQ[φγ(θ;Z)]

}
, (10)

and for any γ ≥ 0, we have
sup
P
{EP [`(θ;Z)]− γWc(P,Q)} = EQ[φγ(θ;Z)]. (11)

Leveraging the insight (3), we give up the requirement that we wish a prescribed amount ρ of robustness
(solving the worst-case problem (1) for P = {P : Wc(P, P0) ≤ ρ}) and focus instead on the Lagrangian
penalty problem (2) and its empirical counterpart

minimize
θ∈Θ

{
Fn(θ) := sup

P

{
E[`(θ;Z)]− γWc(P, P̂n)

}
= EP̂n [φγ(θ;Z)]

}
. (12)

A.1 Proof of Proposition 3

For completeness, we provide an alternative proof to that given in Blanchet and Murthy [5] using convex
analysis. Our proof is less general, requiring the cost function c to be continuous and convex in its first
argument.
The below general duality result gives Proposition 3 as an immediate special case. Recalling Rockafellar and
Wets [26, Def. 14.27 and Prop. 14.33], we say that a function g : X × Z → R is a normal integrand if for
each α, the mapping

z 7→ {x | g(x, z) ≤ α}

is closed-valued and measurable. We recall that if g is continuous, then g is a normal integrand [26, Cor. 14.34];
therefore, g(x, z) = γc(x, z)− `(θ;x) is a normal integrand. We have the following theorem.

Theorem 4. Let f, c be such that for any γ ≥ 0, the function g(x, z) = γc(x, z)− f(x) is a normal integrand.
(For example, continuity of f and closed convexity of c is sufficient.) For any ρ > 0 we have

sup
P :Wc(P,Q)

∫
f(x)dP (x) = inf

γ≥0

{∫
sup
x∈X
{f(x)− γc(x, z)} dQ(z) + γρ

}
.

Proof First, the mapping P 7→Wc(P,Q) is convex in the space of probability measures. As taking P = Q
yields Wc(Q,Q) = 0, Slater’s condition holds and we may apply standard (infinite dimensional) duality
results [19, Thm. 8.7.1] to obtain

sup
P :Wc(P,Q)

∫
f(x)dP (x) = sup

P :Wc(P,Q)

inf
γ≥0

{∫
f(x)dP (x)− γWc(P,Q) + γρ

}
= inf
γ≥0

sup
P :Wc(P,Q)

{∫
f(x)dP (x)− γWc(P,Q) + γρ

}
.

Now, noting that for any M ∈ Π(P,Q) we have
∫
fdP =

∫∫
f(x)dM(x, z), we have that the rightmost

quantity in the preceding display satisfies∫
f(x)dP (x)− γ inf

M∈Π(P,Q)

∫
c(x, z)dM(x, z) = sup

M∈Π(P,Q)

{∫
[f(x)− γc(x, z)]dM(x, z)

}
.

That is, we have

sup
P :Wc(P,Q)

∫
f(x)dP (x) = inf

γ≥0
sup

P,M∈Π(P,Q)

{∫
[f(x)− γc(x, z)]dM(x, z) + γρ

}
. (13)
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Now, we note a few basic facts. First, because we have a joint supremum over P and measures M ∈ Π(P,Q)
in expression (13), we have that

sup
P,M∈Π(P,Q)

∫
[f(x)− γc(x, z)]dM(x, z) ≤

∫
sup
x

[f(x)− γc(x, z)]dQ(z).

We would like to show equality in the above. To that end, we note that if P denotes the space of regular
conditional probabilities (Markov kernels) from Z to X , then

sup
P,M∈Π(P,Q)

∫
[f(x)− γc(x, z)]dM(x, z) ≥ sup

P∈P

∫
[f(x)− γc(x, z)]dP (x | z)dQ(z).

Recall that a conditional distribution P (· | z) is regular if P (· | z) is a distribution for each z and for each
measurable A, the function z 7→ P (A | z) is measurable. Let X denote the space of all measurable mappings
z 7→ x(z) from Z to X . Using the powerful measurability results of Rockafellar and Wets [26, Theorem
14.60], we have

sup
x∈X

∫
[f(x(z))− γc(x(z), z)]dQ(z) =

∫
sup
x∈X

[f(x)− γc(x, z)]dQ(z)

because f−c is upper semi-continuous, and the latter function is measurable. Now, let x(z) be any measurable
function that is ε-close to attaining the supremum above. Define the conditional distribution P (· | z) to be
supported on x(z), which is evidently measurable. Then using the preceding display, we have∫

[f(x)− γc(x, z)]dP (x | z)dQ(z) =

∫
[f(x(z))− γc(x(z), z)]dQ(z)

≥
∫

sup
x∈X

[f(x)− γc(x, z)]dQ(z)− ε

≥ sup
P,M∈Π(P,Q)

∫
[f(x)− γc(x, z)]dM(x, z)− ε.

As ε > 0 is arbitrary, this gives

sup
P,M∈Π(P,Q)

∫
[f(x)− γc(x, z)]dM(x, z) =

∫
sup
x∈X

[f(x)− γc(x, z)]dQ(z)

as desired, which implies both equality (11) and completes the proof.

B Optimization

First, the following lemma shows (more generically) that if γ is large enough and Assumptions A and B hold,
the surrogate φγ is still smooth.

Lemma 1. Let f : Θ × Z → R be differentiable and λ-strongly concave in z with respect to the norm
‖·‖, and define f̄(θ) = supz∈Z f(θ, z). Let gθ(θ, z) = ∇θf(θ, z) and gz(θ, z) = ∇zf(θ, z), and assume
gθ and gz satisfy the Lipschitz conditions of Assumption B. Then f̄ is differentiable, and letting z?(θ) =
argmaxz∈Z f(θ, z), we have ∇f̄(θ) = gθ(θ, z

?(θ)). Moreover,

‖z?(θ1)− z?(θ2)‖ ≤ Lzθ

λ
‖θ1 − θ2‖ and

∥∥∇f̄(θ)−∇f̄(θ′)
∥∥
?
≤
(
Lθθ +

LθzLzθ

λ

)
‖θ − θ′‖ .

See Section B.1 for the proof. Focusing on the `2-norm case, an immediate application of Lemma 1 shows
that if Assumption B holds, then φγ has L = Lθθ + LθzLzθ

[γ−Lzz]+
-Lipschitz gradients, and

∇θφγ(θ; z0) = ∇θ`(θ; z?(z0, θ)) where z?(z0, θ) = argmax
z∈Z

{`(θ; z)− γc(z, z0)}.

We are now ready to give a proof of Theorem 1.

Proof of Theorem 1

Our proof is based on that of Ghadimi and Lan [11].
For shorthand, let f(θ, z; z0) = `(θ; z)− γc(z, z0), noting that we perform gradient steps with

gt = ∇θf(θt, ẑ(θt; zt); zt)
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for ẑt an ε-approximate maximizer of f(θ, z; zt) in z, and θt+1 = θt − αtgt. By a Taylor expansion using the
L-smoothness of the objective F , we have

F (θt+1) ≤ F (θt) +
〈
∇F (θt), θt+1 − θt

〉
+
L

2

∥∥θt+1 − θt
∥∥2

2

= F (θt)− αt
∥∥∇F (θt)

∥∥2

2
+
Lα2

t

2

∥∥gt∥∥2

2
+ αt

〈
∇F (θt),∇F (θt)− gt

〉
= F (θt)− αt

(
1− Lαt

2

)∥∥∇F (θt)
∥∥2

2
(14)

+ αt

(
1 +

Lαt
2

)〈
∇F (θt),∇F (θt)− gt

〉
+
Lα2

t

2

∥∥gt −∇F (θt)
∥∥2

2
.

Recalling the definition (2b) of φγ(θ; z0) = supz∈Z f(θ, z; z0), we define the potentially biased errors
δt = gt −∇θφγ(θt; zt). Letting zt? = argmaxz f(θt, z; zt), these errors evidently satisfy∥∥δt∥∥2

2
=
∥∥∇θφγ(θt; zt)−∇θf(θ, ẑt; zt)

∥∥2

2
=
∥∥∇θ`(θ, zt?)−∇θ`(θ, ẑt)∥∥2

2

≤ L2
θz‖ẑt − zt?‖22 ≤

L2
θz

λ
ε,

where the final inequality uses the λ = γ − Lzz strong-concavity of z 7→ f(θ, z; z0). For shorthand, let
ε̂ =

2L2
θz

γ−Lzz
ε. Substituting the preceding display into the progress guarantee (14), we have

F (θt+1) = F (θt)− αt
(

1− Lαt
2

)∥∥∇F (θt)
∥∥2

2
− αt

(
1 +

Lαt
2

)〈
∇F (θt), δt

〉
+ αt

(
1 +

Lαt
2

)〈
∇F (θt),∇F (θt)−∇θφγ(θ; zt)

〉
+
Lα2

t

2

∥∥∇θφγ(θ; zt) + δt −∇F (θt)
∥∥2

2

≤ F (θt)− αt
2

(1− Lαt)
∥∥∇F (θt)

∥∥2

2
+
αt
2

(
1 +

Lαt
2

)∥∥δt∥∥2

2

αt

(
1 +

Lαt
2

)〈
∇F (θt),∇F (θt)−∇θφγ(θ; zt)

〉
+ Lα2

t (
∥∥∇θφγ(θt; zt)−∇F (θt)

∥∥2

2
+
∥∥δt∥∥2

2
).

Noting that E[∇θφγ(θt; zt) | θt] = ∇F (θt), we take expectations to find

E[F (θt+1)− F (θt) | θt] ≤ −αt
2

(1− Lαt)
∥∥∇F (θt)

∥∥2

2
+

(
αt
2

+
5Lα2

t

4

)
ε̂+ Lα2

tσ
2, (15)

where we have used that E[‖∇φγ(θ;Z)−∇F (θ)‖22] ≤ σ2 by assumption.
The bound (15) gives the theorem essentially immediately for fixed stepsizes α, as we have

α

2
(1− Lα)E

[ T∑
t=1

∥∥∇F (θt)
∥∥2

2

]
≤ F (θ0)− E[F (θT+1)] +

Tα

2

(
1 +

5Lα

4

)
ε̂+ TLα2σ2.

Noting that infθ F (θ) ≤ F (θT+1) gives the final result.

B.1 Proof of Lemma 1

Differentiability is a consequence of one of the many forms of Danskin’s Theorem (e.g. Appendix B in [2]).
For smoothness, we first argue that z?(θ) is continuous in θ. For any θ, optimality of z?(θ) implies that
gz(θ, z

?(θ))T (z− z?(θ)) ≤ 0. By strong concavity, for any θ1, θ2 and z?1 = z?(θ1) and z?2 = z?(θ2), we have
λ

2
‖z?1 − z?2‖

2 ≤ f(θ2, z
?
2)− f(θ2, z

?
1) and f(θ2, z

?
2) ≤ f(θ2, z

?
1) + gz(θ2, z

?
1)T (z?2 − z?1)− λ

2
‖z?1 − z?2‖

2
.

Summing these inequalities gives
λ ‖z?1 − z?2‖

2 ≤ gz(θ2, z
?
1)T (z?2 − z?1) ≤ (gz(θ2, z

?
1)− gz(θ1, z

?
1))T (z?2 − z?1),

where the last inequality follows because gz(θ1, z
?
1)T (z?2 − z?1) ≤ 0. Using a cross-Lipschitz condition from

above and Holder’s inequality, we obtain
λ ‖z?1 − z?2‖

2 ≤ ‖gz(θ2, z
?
1)− gz(θ1, z

?
1)‖? ‖z

?
1 − z?2‖ ≤ Lzθ ‖θ1 − θ2‖ ‖z?1 − z?2‖ ,

that is,

‖z?1 − z?2‖ ≤
Lzθ

λ
‖θ1 − θ2‖ . (16)

Then we have
‖gθ(θ1, z

?
1)− gθ(θ2, z

?
2)‖? ≤ ‖gθ(θ1, z

?
1)− gθ(θ1, z

?
2)‖? + ‖gθ(θ1, z

?
2)− gθ(θ2, z

?
2)‖?

≤ Lθz ‖z?1 − z?2‖+ Lθθ ‖θ1 − θ2‖

≤
(
Lθθ +

LθzLzθ

λ

)
‖θ1 − θ2‖ ,
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where we have used inequality (16) again. This is the desired result.

C Finding worst-case perturbations with ReLU’s is NP-hard

We show that computing worst-case perturbations supu∈U `(θ; z+u) is NP-hard for a large class of feedforward
neural networks with ReLU activations. This result is essentially due to Katz et al. [16]. In the following, we
use polynomial time mean polynomial growth with respect to m, the dimension of the inputs z.
An optimization problem is NPO (NP-Optimization) if (i) the dimensionality of the solution grows polynomi-
ally, (ii) the language {u ∈ U} can be recognized in polynomial time (i.e. a deterministic algorithm can decide
in polynomial time whether u ∈ U), and (iii) ` can be evaluated in polynomial time. We restrict analysis
to feedforward neural networks with ReLU activations such that the corresponding worst-case perturbation
problem is NPO.4 Furthermore, we impose separable structure on U , that is, U := {v ≤ u ≤ w} for some
v < w ∈ Rm.

Lemma 2. Consider feedforward neural networks with ReLU’s and let U := {v ≤ u ≤ w}, where v < w
such that the optimization problem max .u∈U `(θ; z + u) is NPO. There exist θ such that this optimization
problem is also NP-hard.

Proof First, we introduce the decision reformulation of the problem: for some b, we ask whether there exists
some u such that `(θ; z + u) ≥ b. The decision reformulation for an NPO problem is in NP, as a certificate for
the decision problem can be verified in polynomial time. By appropriate scaling of θ, v, and w, Katz et al.
[16] show that 3-SAT Turing-reduces to this decision problem: given an oracle D for the decision problem,
we can solve an arbitrary instance of 3-SAT with a polynomial number of calls to D. The decision problem is
thus NP-complete.
Now, consider an oracle O for the optimization problem. The decision problem Turing-reduces to the
optimization problem, as the decision problem can be solved with one call to O. Thus, the optimization
problem is NP-hard.

D Generalization

First, we give a concrete variant of Theorem 2 for Lipschitz functions. When the parameter set Θ is finite
dimensional (Θ ⊂ Rd), Theorem 2 provides a robustness guarantee scaling with d in spite of the infinite-
dimensional Wasserstein penalty. Assuming there exist θ0 ∈ Θ,Mθ0 <∞ such that such that |`(θ0; z)| ≤Mθ0
for all z ∈ Z , we have the following corollary (see Section D.3 for a proof).

Corollary 1. Let `(·; z) be L-Lipschitz with respect to some norm ‖·‖ for all z ∈ Z . Assume that Θ ⊂ Rd
satisfies diam(Θ) = supθ,θ′∈Θ ‖θ − θ′‖ <∞. Then, the bounds (5) and (6) hold with

εn(t) = b1

√
d(Ldiam(Θ) +Mθ0)

n
+ b2(Ldiam(Θ) +Mθ0)

√
t

n
for some numerical constants b1, b2 > 0.

Next, we show that adversarial perturbations on the training set (in a sense) generalize: solving the empirical
penalty problem (12) guarantees a similar level of robustness as directly solving its population counterpart (2).
Our starting point is Lemma 1, which shows that Tγ(·; z) is smooth under Assumptions A and B:

‖Tγ(θ1; z)− Tγ(θ2; z)‖ ≤ Lzθ

[γ − Lzz]+
‖θ1 − θ2‖ (17)

for all θ1, θ2, where we recall that Lzz is the Lipschitz constant of ∇z`(θ; z). Leveraging this smoothness,
we show that ρ̂n(θ) = EP̂n [c(Tγ(θ;Z), Z)], the level of robustness achieved for the empirical problem,
concentrates uniformly around its population counterpart.

Theorem 5. Let Z ⊂ {z ∈ Rm : ‖z‖ ≤ Mz} so that ‖Z‖ ≤ Mz almost surely and assume either that (i)
c(·, ·) is Lc-Lipschitz over Z with respect to the norm ‖·‖ in each argument, or (ii) that `(θ, z) ∈ [0,M`] and
z 7→ `(θ, z) is γLc-Lipschitz for all θ ∈ Θ.
If Assumptions A and B hold, then with probability at least 1− e−t,

sup
θ∈Θ
|EP̂n [c(Tγ(θ;Z), Z)]− EP0

[c(Tγ(θ;Z), Z)]| ≤ 4D

√
1

n

(
t+ logN

(
Θ,

[γ − Lzz]+ t

4LcLzθ
, ‖·‖

))
. (18)

where B = LcMz under assumption (i) and B = M`/γ under assumption (ii).
4Note that z, u ∈ Rm, so trivially the dimensionality of the solution grows polynomially.
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See Section D.2 for the proof. For Θ ⊂ Rd, we have logN(Θ, ε, ‖·‖) ≤ d log(1 + diam(Θ)
ε ) so that the

bound (21) gives the usual
√
d/n generalization rate for the distance between adversarial perturbations and

natural examples. Another consequence of Theorem 5 is that ρ̂n(θWRM) in the certificate (6) is positive as
long as the loss ` is not completely invariant to data. To see this, note from the optimality conditions for
Tγ(θ;Z) that EP0

[c(Tγ(θ;Z), Z)] = 0 iff ∇z`(θ; z) = 0 almost surely, and hence for large enough n, we
have ρ̂n(θ) > 0 by the bound (21).

D.1 Proof of Theorem 2

We first show the bound (5). From the duality result (10), we have the deterministic result that
sup

P :Wc(P,Q)≤ρ
EQ[`(θ;Z)] ≤ γρ+ EQ[φγ(θ;Z)]

for all ρ > 0, distributionsQ, and γ ≥ 0. Next, we show that EP̂n [φγ(θ;Z)] concentrates around its population
counterpart at the usual rate [6].
First, we have that

φγ(θ; z) ∈ [−M`,M`],

because −M` ≤ `(θ; z) ≤ φγ(θ; z) ≤ supz `(θ; z) ≤ M`. Thus, the functional θ 7→ Fn(θ) satisfies
bounded differences [7, Thm. 6.2], and applying standard results on Rademacher complexity [1] and entropy
integrals [29, Ch. 2.2] gives the result.
To see the second result (6), we substitute ρ = ρ̂n in the bound (5). Then, with probability at least 1− e−t, we
have

sup
P :Wc(P,P0)≤ρ̂n(θ)

EP [`(θ;Z)] ≤ γρ̂n(θ) + EP̂n [φγ(θ;Z)] + εn,1(t).

Since we have
sup

P :Wc(P,P̂n)≤ρ̂n(θ)

EP [`(θ;Z)] = EP̂n [φγ(θ;Z)] + γρ̂n(θ).

from the strong duality in Proposition 3, our second result follows.

D.2 Proof of Theorem 5

Define
P ∗n(θ) := argmax

P

{
EP [`(θ;Z)]− γWc(P, P̂n)

}
,

P ∗(θ) := argmax
P

{EP [`(θ;Z)]− γWc(P, P0)} .

First, we show that P ∗(θ) and P ∗n(θ) are attained for all θ ∈ Θ. We omit the dependency on θ for notational
simplicity and only show the result for P ∗(θ) as the case for P ∗n(θ) is symmetric. Let P ε be an ε-maximizer,
so that

EP ε [`(θ;Z)]− γWc(P
ε, P0) ≥ sup

P
{EP [`(θ;Z)]− γWc(Pn, P0)} − ε.

As Z is compact, the collection {P 1/k}k∈N is a uniformly tight collection of measures. By Prohorov’s
theorem [4, Ch 1.1, p. 57], (restricting to a subsequence if necessary), there exists some distribution P ∗ on Z
such that P 1/k d→ P ∗ as k → ∞. Continuity properties of Wasserstein distances [30, Corollary 6.11] then
imply that

lim
k→∞

Wc(P
1/k, P0) = Wc(P

∗, P0). (19)

Combining (19) and the monotone convergence theorem, we obtain

EP∗ [`(θ;Z)]− γWc(P
∗, P0) = lim

k→∞

{
EP 1/k [`(θ;Z)]− γWc(P

1/k, P0)
}

≥ sup
P
{EP [`(θ;Z)]− γWc(P, P0)} .

We conclude that P ∗ is attained for all P0.
Next, we show the concentration result (21). Recall the transportation mapping

T (θ, z) := argmax
z′∈Z

{`(θ; z′)− γc(z′, z)} ,

which is unique and well-defined under our strong concavity assumption that γ > Lzz, and smooth (recall
Eq. (17)) in θ. Then by Proposition 3 (or by using a variant of Kantorovich duality [30, Chs. 9–10]), we have

EP∗n(θ)[`(θ;Z) = EP̂n [`(θ;T (θ;Z))] and EP∗(θ)[`(θ;Z) = EP0 [`(θ;T (θ;Z))]

Wc(P
∗
n(θ), P̂n) = EP̂n [c(T (θ;Z), Z)] and Wc(P

∗(θ), P0) = EP0 [c(T (θ;Z), Z)].

We now proceed by showing the uniform convergence of
EP̂n [c(T (θ;Z), Z)] to EP0 [c(T (θ;Z), Z)]
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under both cases (i), that c is Lipschitz, and (ii), that ` is Lipschitz in z, using a covering argument on Θ.
Recall inequality (17) (i.e. Lemma 1), which is that

‖T (θ1; z)− T (θ2; z)‖ ≤ Lzθ

[γ − Lzz]+
‖θ1 − θ2‖ .

We have the following lemma.
Lemma 3. Assume the conditions of Theorem 5. Then for any θ1, θ2 ∈ Θ,

|c(T (θ1; z), z)− c(T (θ2; z), z)| ≤ LcLzθ

[γ − Lzz]+
‖θ1 − θ2‖ .

Proof In the first case, that c is Lc-Lipschitz in its first argument, this is trivial: we have

|c(T (θ1; z), z)− c(T (θ2; z), z)| ≤ Lc ‖T (θ1; z)− T (θ2; z)‖ ≤ LcLzθ

[γ − Lzz]+
‖θ1 − θ2‖

by the smoothness inequality (17) for T .
In the second case, that z 7→ `(θ, z) is Lc-Lipschitz, let zi = T (θi; z) for shorthand. Then we have

γc(z2, z)− γc(z1, z) = γc(z2, z)− `(θ2, z2) + `(θ2, z2)− γc(z1, z)

≤ γc(z1, z)− `(θ2, z1) + `(θ2, z2)− γc(z1, z) = `(θ2, z2)− `(θ2, z1),
and similarly,

γc(z2, z)− γc(z1, z) = γc(z2, z)− `(θ1, z1) + `(θ1, z1)− γc(z1, z)

≥ γc(z2, z)− `(θ1, z1) + `(θ1, z2)− γc(z2, z) = `(θ1, z2)− `(θ1, z1).
Combining these two inequalities and using that

|`(θ, z2)− `(θ, z1)| ≤ γLc ‖z2 − z1‖
for any θ gives the result.

Using Lemma 3 we obtain that θ 7→ |EP̂n [c(T (θ;Z), θ)] − EP0 [c(T (θ;Z), Z)]| is 2LcLzθ/ [γ − Lzz]+-

Lipschitz. Let Θcover = {θ1, · · · , θN} be a
[γ−Lzz]+t

4LcLzθ
-cover of Θ with respect to ‖·‖. From Lipschitzness of

|EP̂n [c(T (θ;Z), Z)]− EP0 [c(T (θ;Z), Z)]|, we have that if for all θ ∈ {Θcover},

|EP̂n [c(T (θ;Z), Z)]− EP0
[c(T (θ;Z), θ)]| ≤ t

2
,

then it follows that
sup
θ∈Θ
|EP̂n [c(T (θ;Z), Z)]− EP0

[c(T (θ;Z), Z)]| ≤ t.

Under the first assumption (i), we have |c(T (θ;Z), Z)| ≤ 2LcMz. Applying Hoefdding’s inequality, for any
fixed θ ∈ Θ

P
(
|EP̂n [c(T (θ;Z), Z)]− EP0 [c(T (θ;Z), Z)]| ≥ t

2

)
≤ 2 exp

(
− nt2

32L2
cM

2
z

)
.

Taking a union bound over θ1, · · · , θN , we conclude that

P
(

sup
θ∈Θ
|EP̂n [c(T (θ;Z), Z)]− EP0

[c(T (θ;Z), Z)]| ≥ t
)
≤ 2N

(
Θ,

[γ − Lzz]+ t

4LcLzθ
, ‖·‖

)
exp

(
− nt2

32L2
cM

2
z

)
which was our desired result (21).
Under the second assumption (ii), we have from the definition of the transport map T

γc(T (θ; z), z) ≤ `(θ; z) ≤M`

and hence |c(T (θ;Z), Z)| ≤M`/γ. The result for the second case follows from an identical reasoning.

D.3 Proof of Corollary 1

The result is essentially standard [29], which we now give for completeness.
Note that for F = {`(θ; ·) : θ ∈ Θ}, any (ε, ‖·‖)-covering {θ1, . . . , θN} of Θ guarantees that mini |`(θ; z)−
`(θi; z)| ≤ Lε for all θ, z, or

N(F , ε, ‖·‖L∞(Z)) ≤ N(Θ, ε/L, ‖·‖) ≤
(

1 +
diam(Θ)L

ε

)d
,

where diam(Θ) = supθ,θ′∈Θ ‖θ − θ′‖. Noting that |`(θ;Z)| ≤ Ldiam(Θ) +M0 =: M`, we have the result.

E Additional Experiments
E.1 MNIST attacks

We repeat Figure 1(a) using FGM (Figure 3) and IFGM (Figure 4) attacks. The same trends are evident as
in Figure 1(a). We also show PGM attacks again in Figure 2 for comparison. We scale γ in the figures with
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Figure 2. PGM attacks on the MNIST dataset. (a) and (b) show test misclassification error vs. the adversarial
perturbation level εadv for the PGM attack with respect to Euclidean and∞ norms respectively. The vertical bar
in (a) indicates the perturbation level used for training the FGM, IFGM, and PGM models as well as the estimated
radius

√
ρ̂n(θWRM). For MNIST, C2 = 9.21 and C∞ = 1.00.

Cp := EP̂n ‖X‖p. For the standard MNIST dataset, C2 := EP̂n ‖X‖2 = 9.21 and C∞ := EP̂n ‖X‖∞ =
1.00.
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Figure 3. Fast-gradient attacks on the MNIST dataset. (a) and (b) show test misclassification error vs. the
adversarial perturbation level εadv for the FGM attack with respect to the Euclidean and∞ norms respectively.
The vertical bar in (a) indicates the perturbation level that was used for training the FGM, IFGM, and PGM models
and the estimated radius

√
ρ̂n(θWRM).
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Figure 4. Iterated fast-gradient attacks on the MNIST dataset. (a) and (b) show test misclassification error vs. the
adversarial perturbation level εadv for the IFGM attack with respect to the Euclidean and∞ norms respectively.
The vertical bar in (a) indicates the perturbation level that was used for training the FGM, IFGM, and PGM models
and the estimated radius

√
ρ̂n(θWRM).
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Figure 5. Visualizing stability over inputs. We illustrate the smallest WRM perturbation (largest γadv) necessary
to make a model misclassify a datapoint.

E.2 MNIST stability of loss surface

In Figure 5, we repeat the illustration in Figure 1(c) for more digits. WRM’s “misclassifications” are
consistently reasonable to the human eye, as gradient-based perturbations actually transform the original image
to other labels. Other models do not exhibit this behavior with the same consistency (if at all). Reasonable
misclassifications correspond to having learned a data representation that makes gradients interpretable.

E.3 MNIST Experiments with varied γ

In Figure 6, we choose a fixed WRM adversary (fixed γadv) and perturb WRM models trained with various
penalty parameters γ. We note that as the bound (5) with η = γ suggests, even when the adversary has more
budget than that used for training (1/γ < 1/γadv), degradation in performance is still smooth. Further, as
we decrease the penalty γ, we see that the amount of achieved robustness—measured here by test error on
adversarial perturbations with γadv—has diminishing gains; this is again consistent to our theory which says
that the inner problem (2b) is not efficiently computable for small values of γ.

F Supervised Learning

In supervised learning settings, it is often natural—for example, in classification—to only consider adversarial
perturbations to the feature vectors (covariates). In this section, we give an adapation of the results in Sections B
and D (Theorems 1 and 5) to such scenarios. Let Z = (X,Y ) ∈ X ×R where X ∈ X is a feature vector5 and
Y ∈ R is a label. In classification settings, we have Y ∈ {1, . . . ,K}. We consider an adversary that can only
perturb the feature vector X [12], which can be easily represented in our robust formulation (2) by defining
the cost function c : Z × Z → R+ ∪ {∞} as follows: for z = (x, y) and z′ = (x′, y′), recall the covariate
shift cost function

c(z, z′) := cx(x, x′) +∞ · 1 {y 6= y′} , (20)

where cx : X × X → R+ is the transportation cost for the feature vector X . As before, we assume that cx is
nonnegative, continuous, convex in its first argument and satisfies cx(x, x) = 0.

5We assume that X is a subset of normed vector space.
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Figure 6. (a) Stability and (b) test error for a fixed adversary. We train WRM models with various levels of γ and
perturb them with a fixed WRM adversary (γadv indicated by the vertical bar).

Under the cost function (20), the robust surrogate loss in the penalty problem (2) and its empirical coun-
terpart (12) becomes φγ(θ; (x0, y0)) = supx∈X {`(θ; (x, y0))− γcx(x, x0)}. Similarly as in Section B, we
require the following two assumptions that guarantee efficient computability of the robust surrogate φγ .
Assumption C. The function cx : X × X → R+ is continuous. For each x0 ∈ X , cx(·, x0) is 1-strongly
convex with respect to the norm ‖·‖.
Let ‖·‖∗ be the dual norm to ‖·‖; we again abuse notation by using the same norm ‖·‖ on Θ and X , though the
specific norm is clear from context.
Assumption D. The loss ` : Θ×Z → R satisfies the Lipschitzian smoothness conditions
‖∇θ`(θ; (x, y))−∇θ`(θ′; (x, y))‖∗ ≤ Lθθ ‖θ − θ

′‖ , ‖∇x`(θ; (x, y))−∇x`(θ; (x′, y))‖∗ ≤ Lxx ‖x− x′‖ ,
‖∇θ`(θ; (x, y))−∇θ`(θ; (x′, y))‖∗ ≤ Lθx ‖x− x

′‖ , ‖∇x`(θ; (x, y))−∇x`(θ′; (x, y))‖∗ ≤ Lxθ ‖θ − θ′‖ .
Under Assumptions C and D, an analogue of Lemma 1 still holds. The proof of the following result is nearly
identical to that of Lemma 1; we state the full result for completeness.
Lemma 4. Let f : Θ × X → R be differentiable and λ-strongly concave in x with respect to the norm
‖·‖, and define f̄(θ) = supx∈X f(θ, x). Let gθ(θ, x) = ∇θf(θ, x) and gx(θ, x) = ∇xf(θ, x), and assume
gθ and gx satisfy the Lipschitz conditions of Assumption B. Then f̄ is differentiable, and letting x?(θ) =
argmaxx∈X f(θ, x), we have ∇f̄(θ) = gθ(θ, x

?(θ)). Moreover,

‖x?(θ1)− x?(θ2)‖ ≤ Lxθ

λ
‖θ1 − θ2‖ and

∥∥∇f̄(θ)−∇f̄(θ′)
∥∥
?
≤
(
Lθθ +

LθxLxθ

λ

)
‖θ − θ′‖ .

From Lemma 4, our previous results (Theorems 1 and 5) follow. The following is an analogue of Theorem 1
for the cost function (20).
Theorem 6 (Convergence of Nonconvex SGD). Let Assumptions C and D hold with the `2-norm and let
Θ = Rd. Let ∆F ≥ F (θ0) − infθ F (θ). Assume E[‖∇F (θ)−∇θφγ(θ, Z)‖22] ≤ σ2, and take constant

stepsizes α =
√

2∆F

Lσ2T where L = Lθθ + LθxLxθ

γ−Lxx
. Then Algorithm 1 satisfies

1

T

T∑
t=1

E
[∥∥∇F (θt)

∥∥2

2

]
− 2L2

θx

γ − Lxx
ε ≤ σ

√
8
L∆F

T
.

Similarly, an analogous result to Theorem 5 holds. Define the transport map for the covariate shift
Tγ(θ; (x0, y0)) := argmax

x∈X
{`(θ; (x, y0))− γcx(x, x0)}.

Theorem 7. Let Z ⊂ {z ∈ Rm : ‖z‖ ≤ Mz} so that ‖Z‖ ≤ Mz almost surely and assume either that (i)
cx(·, ·) is Lc-Lipschitz over X with respect to the norm ‖·‖ in each argument, or (ii) that `(θ, z) ∈ [0,M`] and
x 7→ `(θ, (x, y)) is γLc-Lipschitz for all θ ∈ Θ. If Assumptions C and D hold, then with probability at least
1− e−t,

sup
θ∈Θ
|EP̂n [c(Tγ(θ;Z), Z)]− EP0

[c(Tγ(θ;Z), Z)]| ≤ 4D

√
1

n

(
t+ logN

(
Θ,

[γ − Lxx]+ t

4LcLxθ
, ‖·‖

))
. (21)

where B = LcMz under assumption (i) and B = M`/γ under assumption (ii).

For both results, the proofs are essentially identical as before, but with an application of Lemma 4 instead of
Lemma 1.
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