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Abstract

Machine learning models are vulnerable to adversarial attacks at test time: a cor-
rectly classified test example can be slightly perturbed to cause a misclassification.
Training models that are robust to these attacks, and theoretical understanding of
such defenses are active research areas. Adversarial Training (AT) via robust opti-
mization is a promising approach, where the model is trained against an adversary
acting on the training set, but it is less clear how to reason about perturbations on
the unseen test set. Distributionally Robust Optimization (DRO) with Wasserstein
distance is an interesting theoretical tool for understanding robustness and gener-
alization, but it has been limited algorithmically to simple models. We link DRO
and AT both theoretically and algorithmically: AT is a special case of DRO, and in
general DRO yields a stronger adversary. We also give an algorithm for DRO for
neural networks that is no more expensive than AT.

1 Introduction

Machine learning models are vulnerable to adversarial examples [30, 13]: given a model and
a correctly predicted test example, the example can be perturbed by a small amount so that it is
misclassified. There has been much recent work on constructing these adversarial examples [21, 5, 13,
31]. There are also many defenses, or ways of training models so that they are less vulnerable [23, 6,
18, 20, 19]. Adversarial Training (AT) seeks a model that is robust to specific adversarial perturbations
on the training set. AT can be viewed as an attempt to solve a certain robust optimization problem [27,
18] against what we call a pointwise adversary, that independently perturbs each example. However,
we still lack a complete theoretical understanding of this process. In particular, how well does
robustness on the training set generalize to robustness on an unseen test set?

Distributionally Robust Optimization (DRO) is a promising theoretical tool that links generalization
and robustness [11, 4, 8, 7, 12, 2]. DRO seeks a model that performs well under adversarial joint
perturbations of the entire training set. Of the many approaches to DRO, we focus on the case where
the distributional perturbations are measured with p-Wasserstein distance Wp as in e.g. [11, 3, 26].
Wp-DRO yields generalization guarantees but has been limited algorithmically to simple models.

Contributions. We link DRO and AT both theoretically and algorithmically: 1. We show DRO
with Wp distance is stronger than and in fact generalizes the standard pointwise AT adversary. 2. We
give a general algorithmic framework for training distributionally robust models. Our algorithms
work for any reasonable choice of pointwise norm and any p > 1, and admit efficient one-step
approximations similar to the Fast Gradient Sign Method [13]. 3. We demonstrate the effectiveness
of our method and raise several new questions about generalization, robustness, and optimization.

Finally, we note that in parallel with our work, [28] gave a DRO algorithm for differentiable models.
They provide different theory that does not capture our results on mathematically relating DRO to AT.
Their algorithm makes different tradeoffs between complexity, generality, guarantees, and speed.
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2 Background

Notation. Throughout the paper, we have a training set of n pairs (xi, yi) ∈ X ×Y drawn iid from
D, where xi are examples and yi are class labels. Denote byDn the empirical distribution of the pairs.
We seek to learn model parameters θ minimizing a loss function `(x, y; θ). Let d(x, x̃) be a metric
on X ; it will depend on context and is used to define (1) balls Bε(x) = {x̃ : d(x, x̃) ≤ ε} around x,
and (2) the p-Wasserstein distance Wp(D, D̃) = inf{

∫
d(x, y)p dγ(x, y) : γ ∈ Π(D, D̃)}1/p where

Π(D, D̃) are couplings of D, D̃ [32]. By X we mean the matrix with columns x1, . . . , xn. For
S ⊆ {1, . . . , n} denote by XS the matrix whose columns are {xi}i∈S . Throughout the paper, the
adversary perturbs only the examples xi, not the labels yi.

2.1 Adversarial Training and Robust Optimization

First, assume a pointwise attack model where the adversary can vary each input within an ε-ball.We
seek training methods to make deep models robust to such adversaries. As observed in e.g. [27] and
later [18], such a model can be written as the solution to a robust optimization problem against a
specific adversary:

min
θ

E(x,y)∼D

[
max

x̃∈Bε(x)
`(x̃, y; θ)

]
. (1)

In practice, we do not have access to D, so past efforts have sought to solve the empirical version:

min
θ

E(x,y)∼Dn

[
max

x̃∈Bε(x)
`(x̃, y; θ)

]
= min

θ

1

n

n∑
i=1

max
x̃i∈Bε(xi)

`(x̃i, yi; θ). (2)

Solving even the empirical version is a difficult nonconvex problem. In practice, the inner problem
is solved approximately at each iteration, either via a one-step linear approximation called the
Fast Gradient Sign Method (FGSM) [13], or an iterative variant (IFGSM) [15, 16]. The resulting
adversarial x̃i is used to estimate the gradient for θ. This “pointwise” procedure is called Adversarial
Training (AT). Learning the parameters θ via AT yields robust models in practice, but it is not clear to
what extent robustness will generalize to adversarial perturbations of a held-out test set.

2.2 Distributionally Robust Optimization

Distributionally Robust Optimization (DRO) seeks to optimize θ in the face of a stronger adversary.
In particular, the adversary is not limited to moving points x individually, but can move the entire
distribution within an ε-ball of Dn for some notion of distance between distributions. We focus on
DRO defined with respect to Wasserstein distance Wp between distributions as in [11]:

min
θ

max
D̃ :Wp(Dn,D̃)≤ε

E(x,y)∼D̃[`(x, y; θ)]. (3)

This is especially natural in the typical finite sample setting: we perform DRO with respect to the
empirical distribution Dn, with the hope that the true D is close enough to lie in the ε-ball, hence
bounding the population risk. Indeed, for n sufficiently large, we will have Wp(Dn,D) ≤ ε by weak
convergence. Performing DRO with respect to the empirical distribution Dn both encapsulates the
desired adversarial element and has an eye toward good generalization: DRO estimators enjoy certain
generalization guarantees [11, 3, 9, 8]. For some simple models, DRO is the same as empirical risk
minimization (ERM) with a specific regularizing term [3]. However, for general models, it is less
clear how to best perform DRO in practice.

3 Theoretical connections and Algorithms

For now, we study worst-case adversaries for a fixed model.We first show that the distributional adver-
sary from Wasserstein DRO (3) is stronger than and generalizes the typical, pointwise adversary (1):
Proposition 3.1. Fix model parameters θ. For any p ∈ [1,∞],

E(x,y)∼D

[
max

x̃∈Bε(x)
`(x̃, y; θ)

]
≤ max
D̃ :Wp(D,D̃)≤ε

E(x,y)∼D̃[`(x, y; θ)], (4)

where Bε(·) and Wp are defined with respect to the same metric d on X . Equality holds for p =∞.
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Hence a model achieving loss `∗ against DRO should achieve loss no more than `∗ against the
usual pointwise adversary. Proposition 3.1 also gives an intuitive reason to hope for better test-set
robustness with DRO: if the population D lies within ε1 of Dn, then by the triangle inequality we can
guarantee ε2-pointwise robustness on D by training a DRO model on Dn with ε = ε1 + ε2.

It remains to ask: what form does the optimal worst-case distribution D̃ take? The next result gives
a clear picture: instead of independently perturbing each point within an ε-ball, jointly perturb all
points, subject to a budget constraint on the total deviation. In particular, for Wp we constrain the
`p norm of the deviations. This matches intuition that not all examples are equally susceptible to
adversarial perturbation. Joint perturbation yields (up to small error) the worst-case distribution:
Lemma 3.1 (Simplied form of Gao and Kleywegt [11, Corollary 2(iv)]). Fix θ, and suppose that for
all y, the loss `(·, y; θ) is L-Lipschitz as a function of x. Define

OPT = max
D̃ :Wp(Dn,D̃)≤ε

E(x,y)∼D̃[`(x, y; θ)] (5)

and

MIX =
maxx̃1,...,x̃n

1
n

∑n
i=1 `(x̃i, yi; θ)

s.t. 1
n

∑n
i=1 d

p(x̃i, xi) ≤ εp
(6)

Then we have MIX ≥ OPT− LD/n where D bounds the maximum deviation of a single point.

The additive error is a small technical artifact: the true worst-case distribution may need to split one
point xi into two adversarially-chosen points, but this has neglible effect on the value MIX. The term
LD/n merely bounds this effect, and shrinks with the number n of samples. Note as p increases
large values of dp(x̃, x) are penalized heavily and in the limit p→∞ no example moves more than ε.

Solving for the worst-case distribution. In the adversarial examples literature, pointwise distance
d is typically taken to be an `q norm, in particular the `∞ or `2 norm. In this case, problem (6) from
Lemma 3.1 can be cast as optimization over a mixed norm ball. If our training set is given as a matrix
X , and we concatenate all the adversarial examples x̃i into a matrix X̃ , then we wish to solve:

maxX̃
1
n

∑n
i=1 `(x̃i, yi; θ)

s.t. ‖X̃ −X‖p,q ≤ n1/pε.
(7)

While the objective may be nonconvex, fast projection onto mixed norm balls is possible [29, 24], and
we could approximately solve this via projected gradient ascent on X̃ . However, these projections
are hard to implement on a GPU. One alternative would be turning the constraint into a penalty:

max
X̃

1

n

n∑
i=1

`(x̃i, yi; θ)− λ‖X̃ −X‖pp,q ⇔ 1

n

n∑
i=1

max
x̃i

{
`(x̃i, yi; θ)− λ‖x̃i − xi‖pq

}
. (8)

For the special case p = q = 2, this is equivalent to the formulation in [28]. Conveniently, the
problem decouples into separate problems for each training example, making stochastic methods
simple to apply. However, there is no closed-form way to choose the parameter λ for a specific
desired robustness level ε. The problem is unconstrained, so it is not obvious how to compute a
good closed-form approximation like FGSM. Moreover, for the ubiquitous case of the `∞ norm, the
regularizer’s subgradients will likely be zero in all but one coordinate. Hence k inner iterations will
update only O(k) coordinates of a high-dimensional example x̃i. For small k the resulting x̃i may be
far from the true worst-case which perturbs all coordinates.

Our approach: constrained stochastic block coordinate descent. Instead, we aim to directly
solve the constrained problem (7). To avoid updating the entire matrix X̃ , we adopt a constrained
variant of stochastic block coordinate descent (BCD). Begin with an initial X̃ for which the constraint
is tight. In each iteration, we sample a subset S of columns, and optimize X̃S subject to a “local”
mixed norm constraint chosen to ensure X̃ is still at the constraint boundary. We find this approach
works well in practice; for fixed θ our algorithm improves the objective each iteration, though we are
aware of stronger guarantees only for linearly- or un-constrained BCD.

Solving the batch subproblem in each iteration is an optimization problem over an `p,q ball. Since
linear functions can be optimized over mixed-norm balls in closed form (described in Appendix B),
one could apply the Frank-Wolfe algorithm [10, 14], which has convergence rate guarantees even
in the nonconvex case [17, 25]. If we have time only for one iteration, we can alternatively solve a
linear approximation in closed form, just like FGSM.
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Figure 1: (a) our methods (FDRO, FWDRO) are competitive with standard AT and WRM from [28].
(b), (c) confirm our theory that DRO with distance Wp generalizes pointwise adversarial training. As
p grows: (b) performance of FDRO approaches FGSM; (c) the adversary’s learned budgets εi for
each training example xi concentrate around the global budget ε = 0.1 (in AT, all εi = 0.1).

Algorithm 1 Distributionally robust training

Input: dataset (X, y) containing n examples
(xi, yi), batch size k, budget ε
Initialize εi ← ε for all i = 1, . . . , n
loop

Draw subset S ⊂ {1, . . . , n} of size k
Compute local constraint εS = ‖XS‖p,q
Compute adversarial X̃S solving:

maxX̃S
1
k

∑
i∈S `(x̃i, yi; θ)

s.t. ‖X̃S −XS‖p,q ≤ εS

Update εi ← ‖x̃i‖q for all i ∈ S
gθ ← 1

k

∑k
i=1∇θ`(x̃i, yi; θ)

θ ← θ − γθgθ
end loop

Training Algorithm. To train a robust model, it
does not suffice to solve the adversarial problem for
fixed θ: we simultaneously solve for model parame-
ters θ and the worst-case distribution X̃ . Noting that
the model θ is typically learned via minibatch gra-
dient methods, and that our mixed-norm algorithm
above needs only minibatches of data at a time, we
propose Algorithm 1: in each iteration, we sample a
minibatch S, optimize the adversarial X̃S , then use
X̃S to estimate the gradient for θ.

Note also that we never have to store X̃S ; rather, for
each training example we store a budget εi capturing
how much it can be perturbed.

The end result is an algorithm that 1. applies for any
norm `q for measuring pointwise perturbation, 2. can
be approximately solved as fast as FGSM for each minibatch, 3. requires little tuning since the
constraints inform stepsizes, 4. requires minimal extra storage and 5. through learned εi gives
insights about varying susceptibility of individual examples to perturbations. We also reiterate that
the problem we solve strictly generalizes pointwise adversarial robustness (1).

4 Experiments

We implemented two variants of Algorithm 1 (FDRO and FWDRO) as well as the algorithm from [28]
(WRM) in TensorFlow [1] by extending the Cleverhans library [22]. Fast DRO (FDRO) is the one-step
closed-form version of our algorithm, while Frank-Wolfe DRO (FWDRO) runs multiple iterations
per minibatch. We used the W2 version of DRO unless otherwise stated. ERM is empirical risk
minimization with no adversary. All training adversaries had initial εi = 0.1. We test on MNIST using
standard network architectures, algorithms and robustness parameters as described in Appendix C.

In Figure 1.a we test models trained against a variety of adversaries, by comparing their error on the
test set when faced with an IFGSM adversary of varying strength. ERM predictably performs worst.
Our fast one-step method is competitive with the iterative WRM, and our iterative FWDRO performs
even better. Curiously, FGSM (one-step AT) is competitive with FWDRO, and IFGSM performs
best. It is possible that the DRO algorithms do not reach optimality, or the DRO model tolerates
more pointwise loss to counteract the stronger adversary.

In Figures 1.b and 1.c, we confirm our theoretical result that as p grows Wp-DRO behaves more like a
pointwise adversary, both with respect to performance and the distribution of individual budgets εi.

Conclusion. We theoretically and algorithmically link Distributionally Robust Optimization and
Adversarial Training, and propose a practical block coordinate descent algorithm for DRO on
differentiable models. Future work includes analyzing convergence properties of the algorithm, and
analyzing how exactly p and ε impact test-time robustness across datasets and model classes.
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A Distributionally Robust Adversaries are Stronger

Proof of Proposition 3.1. First, consider p ∈ (1,∞). We will show that

E(x,y)∼D

[
max

x̃∈Bε(x)
`(x̃, y; θ)

]
≤ max
D̃ :Wp(D,D̃)≤ε

E(x,y)∼D̃[`(x, y; θ)]. (9)

To begin, observe that the adversary which perturbs individual points can be expressed as a mapping T :
X × Y → X given by

T (x, y) = argmax
x̃∈Bε(x)

`(x̃, y; θ). (10)

Moreover, applying (x, y) 7→ (T (x, y), y) to D implicitly defines a particular distribution D̂ with the property
that

E(x,y)∼D

[
max

x̃∈Bε(x)
`(x̃, y; θ)

]
= E(x,y)∼D [`(T (x, y), y; θ)] (11)

= E(x,y)∼D̂ [`(x, y; θ)] . (12)

It remains to show that D̂ is a feasible solution for the DRO adversary, i.e. that Wp(D, D̂) ≤ ε. This can be
done by observing that T is a feasible transport map between D and D̂. Wasserstein distance is defined as an
infimum over probabilistic transport plans, and a transport map is just a special case:

W p
p (D, D̂) = inf

π∈Π(D,D̂)

∫
dp(x, x̂) dπ((x, y), (x̂, ŷ)) (13)

≤ E(x,y)∼D [dp(x, T (x, y))] (14)
≤ E(x,y)∼D [εp] = εp, (15)

from which it follows that Wp(D, D̂) ≤ ε.

For the p =∞ case, simply note that betweenD and D̂, no point must move more than ε from x to x̃. Hence the
essential supremum of the cost incurred by T is bounded by ε. Tightness follows because, under the constraint
W∞(D, D̂), no point is allowed to move more than ε anyway, and there is no reason to split mass.

B Linear Optimization in the `p,q ball

We seek to solve problems of the form

maxX 〈C,X〉
s.t. ‖X‖p,q ≤ 1.

(16)

The result for general constraint values is the same but scaled linearly.

Let xi be the columns of X . The problem above can be rewritten as two nested problems:

max
ε:‖ε‖p≤1

max
X:‖xi‖q≤εi ∀i

〈C,X〉, (17)

where ε = (ε1, . . . , εn). The inner optimization can be separated out for each i:

max
ε:‖ε‖p≤1

n∑
i=1

max
xi:‖xi‖q≤εi

〈ci, xi〉. (18)

We now need a quick lemma, which is proved just by checking optimality conditions:
Lemma B.1. Let p ∈ (1,∞). The optimal solution x∗ to the problem

max
x:‖x‖p≤γ

〈c, x〉 (19)

satisfies x∗j ∝ c
1/(p−1)
j , with normalization to ensure the constraint is satisfied. For p = ∞, we have

x∗j ∝ sign(cj). Note this means that given only p and c, we can compute v with ‖v‖p = 1 so that x∗ = γv.

Hence, in problem (18) we can compute a corresponding vi for each xi so that the problem is equivalent to

max
ε:‖ε‖p≤1

n∑
i=1

〈ci, εivi〉 = max
ε:‖ε‖p≤1

n∑
i=1

εi〈ci, vi〉. (20)

Write ai = 〈ci, vi〉. This is equivalent to maxε:‖ε‖p≤1〈a, ε〉, which can be also be solved in closed form by the
lemma, and once ε is determined, we just set xi = εivi. More compactly, to solve problem (18) we:
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Table 1: Parameters for experiments in the main text.
Figure defense q p ε γ batch size epochs optimizer nonlinearity

1.a ERM N/A N/A N/A N/A 128 25 SGD ReLU
1.a FWDRO ∞ 2 0.1 N/A 128 25 SGD ReLU
1.a FDRO ∞ 2 0.1 N/A 512 25 SGD ReLU
1.a FGSM ∞ 2 0.1 N/A 128 25 SGD ReLU
1.a IFGSM ∞ 2 0.1 N/A 128 25 SGD ReLU
1.a WRM 2 2 N/A 0.001 128 25 Adam ELU

1.b FDRO ∞ 2 0.1 N/A 512 10 SGD ReLU
1.b FDRO ∞ 3 0.1 N/A 512 10 SGD ReLU
1.b FDRO ∞ 4 0.1 N/A 512 10 SGD ReLU
1.b FDRO ∞ 7 0.1 N/A 512 10 SGD ReLU
1.b FGSM ∞ 2 0.1 N/A 256 10 SGD ReLU

1.c FDRO ∞ 2 0.1 N/A 512 10 SGD ReLU
1.c FDRO ∞ 3 0.1 N/A 512 10 SGD ReLU
1.c FDRO ∞ 4 0.1 N/A 512 10 SGD ReLU
1.c FDRO ∞ 7 0.1 N/A 512 10 SGD ReLU

• From ci and q, compute vi per the lemma.

• Compute ai = 〈ci, vi〉.
• Solve maxε:‖ε‖p≤1〈a, ε〉 via the lemma.

• Finally set each column xi = εivi.

C Experiment Details

Parameters for all experiments in the main text are given in Table 1. A stepsize of 0.5 was used for SGD, and
stepsize 0.001 for Adam. In all cases, q refers to the `q norm for comparing points, p refers to the Wp distance
between distributions, ε is as in Equation (3), γ is the regularization parameter from [28].

SGD was used as the default optimizer for our algorithms as its simplicity helped stability: from the perspective
of the model learner, the loss function is actually changing as the distributional adversary evolves.

For WRM, γ = 0.001 was chosen from {0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1} as the best
performer. ELU was used instead of ReLU as recommended in [28], and we switched from SGD to Adam here
to help with stability. We used p = 2 for WRM as in [28], despite the mismatch with the IFGSM adversary.
However, 1. we also tested WRM with p =∞ and it performed poorly, and 2. we found that switching to an `2
IFGSM adversary did not substantially change Figure 1.a.

All iterative defenses and test-time adversaries were run for 15 iterations.

The network architecture was the same across all experiments except for the WRM experiments which swapped
ReLU for ELU. We used the standard CNN from the Cleverhans tutorials: 8× 8 filters, then 6× 6 filters, then
5× 5 filters, followed by a fully-connected layer and then softmax.

D Additional Experiments

In Figure 2 we repeat the experiment from Figure 1.a, except this time we test against IFGSM with respect
to `2 norm. The same performance trend emerges, despite the reversed mismatch between pointwise norms.
Specifically, though the model trained against WRM is the only one trained to be robust to `2 error and all others
are targeted for `∞, IFGSM performs best, followed by FGSM and our FWDRO, and WRM lags behind. Note
that for WRM, γ = 0.001 was again selected as the best performing value for this test.

In Figure 3 we evaluate the stability of the FDRO training procedure as a function of batch size. Training is more
stable when batch sizes are sufficiently large. Our intuition is that our BCD algorithm needs to assign a value εi
to each training sample xi; the more εi’s it can update at once, the faster it will find an optimal assignment over
the whole training set.
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Figure 2: Test error for various defenses against `2 IFGSM adversary. Same as Figure 1.a but with
an `2 adversary instead of `∞.
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Figure 3: Robustness to IFGSM of FDRO for W2, trained with different batch sizes. FDRO training
is less stable for smaller batch sizes, resulting in poor accuracy at test time on clean examples. As
batch size increases, stability improves considerably, presumably because each block coordinate step
is a better approximation of a full gradient step.
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