
Adversarial Patch

Tom B. Brown, Dandelion Mané∗, Aurko Roy, Martín Abadi, Justin Gilmer
{tombrown,dandelion,aurkor,abadi,gilmer}@google.com

Abstract

We present a method to create universal, robust, targeted adversarial image patches
in the real world. The patches are universal because they can be used to attack
any scene, robust because they work under a wide variety of transformations,
and targeted because they can cause a classifier to output any target class. These
adversarial patches can be printed, added to any scene, photographed, and presented
to image classifiers; even when the patches are small, they cause the classifiers to
ignore the other items in the scene and report a chosen target class.

1 Introduction

Deep learning systems are broadly vulnerable to adversarial examples, carefully chosen inputs that
cause the network to change output without a visible change to a human [13, 5]. These adversarial
examples most commonly modify each pixel by only a small amount and can be found using a
number of optimization strategies such as L-BFGS [13], Fast Gradient Sign Method (FGSM) [5],
DeepFool [9], Projected Gradient Descent (PGD) [8], as well as the recently proposed Logit-space
Projected Gradient Ascent (LS-PGA) [2] for discretized inputs. Other attack methods seek to modify
only a small number of pixels in the image (Jacobian-based saliency map [10]), or a small patch at a
particular location of the image [11].

Adversarial examples have been shown to generalize to the real world. Kurakin et al. [7] demonstrated
that when printed out, an adversarially constructed image will continue to be adversarial to classifiers
even under different lighting and orientations. Athalye et al. [3] recently demonstrated adversarial
objects which can be 3d printed and misclassified by networks at different orientations and scales.
Their adversarial objects are designed to be subtle perturbations of a normal object (e.g. a turtle that
has been adversarially perturbed to be classified as a rifle). Another work [11] showed that one can
fool facial recognition software by constructing adversarial glasses. These glasses were targeted in
that they could be constructed to impersonate any person, but were custom made for the attacker’s
face, and were designed with a fixed orientation in mind. Even more recently, Evtimov et al. [4]
demonstrated various methods for constructing stop signs that are misclassified by models, either by
printing out a large poster that looks like a stop sign, or by placing various stickers on a stop sign.

As seen above, a majority of prior work has focused on attacking with and defending against either
small or imperceptible changes to the input. In this work we explore what is possible if an attacker
no longer restricts themselves to imperceptible changes. We construct an attack that does not attempt
to subtly transform an existing item into another. Instead, this attack generates an image-independent
patch that is extremely salient to a neural network. This patch can then be placed anywhere within the
field of view of the classifier, and causes the classifier to output a targeted class. Because this patch is
scene-independent, it allows attackers to create a physical-world attack without prior knowledge of
the lighting conditions, camera angle, type of classifier being attacked, or even the other items within
the scene.

This attack is significant because the attacker does not need to know what image they are attacking
when constructing the attack. After generating an adversarial patch, the patch could be widely

∗Equal contributions with Tom B. Brown

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Figure 1: A real-world attack on VGG16, using a physical patch generated by the white-box ensemble
method described in Section 3. When a photo of a tabletop with a banana and a notebook (top
photograph) is passed through VGG16, the network reports class ’banana’ with 97% confidence (top
plot). If we physically place a sticker targeted to the class "toaster" on the table (bottom photograph),
the photograph is classified as a toaster with 99% confidence (bottom plot). See the following video
for a full demonstration: https://youtu.be/e9IAu4lT9w8

distributed across the Internet for other attackers to print out and use. Additionally, because the
attack uses a large perturbation, existing defense techniques which focus on defending against
small perturbations are unlikely to work. Indeed recent work has demonstrated that state-of-the art
adversarially trained models on MNIST are still vulnerable to larger perturbations than those used in
training either by searching for a nearby adversarial example using a different metric for distance
[12], or by applying large perturbations in the background [1].

2 Approach

The traditional strategy for finding a targeted adversarial example is as follows: given some classifier
P [y | x], some input x ∈ Rn, some target class ŷ and a maximum perturbation ε, we want to find the
input x̂ that maximizes log (P [ŷ | x̂]), subject to the constraint that ‖x− x̂‖∞ ≤ ε. When P [y | x] is
parameterized by a neural network, an attacker with access to the model can perform iterated gradient
descent on x in order to find a suitable input x̂. This strategy can produce a well camouflaged attack,
but requires modifying the target image.

Instead, we create our attack by completely replacing a part of the image with our patch. We mask
our patch to allow it to take any shape, and then train over a variety of images, applying a random
translation, scaling, and rotation on the patch in each image, optimizing using gradient descent. More
formally, we have:

• a trainable patch z ∈ Rn,

• a family of allowable affine transformations T from Rn → Rn,

• and a binary mask m ∈ {0, 1}n.

The final image x̂ must be realizable using the fixed mask m applied on the trained patch ẑ and
some transformation t ∈ T . More formally, we define a patch function p corresponding to every

2

https://youtu.be/e9IAu4lT9w8

transformation t ∈ T that applies the transformed patch onto the image:

pt(x, z) = t(m� z) + [t(1−m)� x] , (1)

where � refers to the pixel-wise Hadamard product. Then the final adversarially perturbed image x̂
must satisfy x̂ = pt (x, ẑ) for the final trained patch ẑ and some t ∈ T .

To obtain the trained patch ẑ, we use a variant of the Expectation over Transformations (EOT)
framework of Athalye et al.[3] Let us briefly review the setup of the EOT framework. In this setting,
we have a family of affine transformations T , a distance metric d in the transformed space, and the
objective is to find a perturbed image x̂ satisfying:

x̂ = argmax
x′

Et∼T [log Pr(ŷ|t(x′))] s.t. Et∼T [d(t(x′), t(x))] < ε,

i.e., the final image should be within ε-ball in expectation over all the transformations in T . Instead
of having an ε bound on the amount of perturbation we are allowed to add, our attack instead finds
the solution to the following unconstrained optimization problem:

ẑ = arg max
z′∈Rn

Et∼T [log (P [ŷ | pt(x, z′)])]).

The final perturbed image x̂ can then be obtained by choosing any t ∈ T and applying the patch
function (1) to ẑ, i.e., x̂ = pt(x, ẑ).

Because our attack leaves the transformation t as an open variable, the attacker is free to choose a t
that has desirable properties for the attack. For example, in the real world, an attacker could choose
to place a trained patch ẑ in an inconspicuous place in the background of an image.

We believe that this attack exploits the way image classification tasks are constructed. While images
may contain several items, only one target label is considered true, and thus the network must learn to
detect the most "salient" item in the frame. The adversarial patch exploits this feature by producing
inputs much more salient than objects in the real world. Thus, when attacking object detection or
image segmentation models, we expect a targeted toaster patch to be classified as a toaster, and not to
affect other portions of the image.

3 Experimental Results

To test our attack, we compare the efficacy of two whitebox attacks, a blackbox attack, and a control
patch. The white box ensemble attack jointly trains a single patch across five ImageNet models:
inceptionv3, resnet50, xception, VGG16, and VGG19. We then evaluate the attack by averaging the
win rate across all five models. The white box single model attack does the same but only trains
and evaluates on a single model. The blackbox attack jointly trains a single patch across four of the
ImageNet models, and then evaluates the blackbox attack on a fifth model, which we did not access
during training. The control is a picture of a toaster.

Figure 2: A comparison of different methods for creating adversarial patches. Note that these success
rates are for random placements of the patch onto the image.

During training and evaluation, the patches are rescaled and then digitally inserted on a random
location on a random ImageNet image. Figure 2 shows the results.

3

Note that the patch size required to reliably fool the model in this universal setting (black box, on a
targeted class, and over all images, locations and transformations) is significantly larger than those
required to perform a non-targeted attack on a single image and a single location in the whitebox
setting. For example, Su et al. [6] recently demonstrated that modifying 1 pixel on a 32x32 pixel
CIFAR-10 image (0.1% of the pixels in the image) suffices to fool the majority of images with
a non-targeted, non-universal whitebox attack. However, our attacks are still far more effective
than naively inserting an image with the target class, as is shown in Figure 2 by the relatively poor
performance of inserting a real toaster into the scene.

Any of the attacks shown in Figure 2 can be camouflaged in order to reduce their saliency to a human
observer. We create a disguised version of the patch by minimizing its L2 distance to a tie-dye pattern
and applying a peace sign mask during training. The results from these experiments are found in
Figure 3.

Figure 3: A comparison of patches with various disguises. We find that we can disguise the patch and
retain much of its power to fool the classifier.

In our final experiment, we test the transferability of our attack into the physical world. We print the
generated patch with a standard color printer, and put it a variety of real world situations. The results
shown in Figure 1 demonstrate that the attack successfully fools the classifier, even when there are
multiple other objects within the scene.

4 Conclusion

We show that we can generate a universal, robust, targeted patch that fools classifiers regardless of
the scale or location of the patch, and does not require knowledge of the other items in the scene
that it is attacking. Our attack works in the real world, and can be disguised as an innocuous sticker.
These results demonstrate an attack that could be created offline, and then broadly shared.

As demonstrated in Section 1, a substantial amount of security research has focused on imperceptible
perturbations. Our attacks are clearly not of this form and the produced patch sometimes resembles
the target class. However, it is unclear whether or not imperceptible perturbations are the real security
concern for applications of interest. For instance, we may imagine an airport surveillance system that
aims to recognize objects (weapons, laptops, etc.) as they pass by a physical location; applying a
patch to those objects may perhaps fool the system, and lead to a security compromise, even though
the patch is obvious to a human. This work shows that focusing only on defending against small
perturbations is insufficient, as large, local perturbations can break classifiers.

5 Appendix

References
[1] Anonymous. Adversarial spheres. International Conference on Learning Representations,

2018.

[2] Anonymous. Thermometer encoding: One hot way to resist adversarial examples. International
Conference on Learning Representations, 2018.

4

[3] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adver-
sarial examples. arXiv preprint arXiv:1707.07397, 2017.

[4] Ivan Evtimov, Kevin Eykholt, Earlence Fernandes, Tadayoshi Kohno, Bo Li, Atul Prakash,
Amir Rahmati, and Dawn Song. Robust physical-world attacks on deep learning models. 2017.

[5] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversar-
ial examples. arXiv preprint arXiv:1412.6572, 2014.

[6] Sakurai Kouichi Jiawei Su, Danilo Vasconcellos Vargas. One pixel attack for fooling deep
neural networks. arXiv preprint arXiv:1710.08864, 2017.

[7] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical
world. arXiv preprint arXiv:1607.02533, 2016.

[8] Aleksander Madry, Aleksander Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards deep learning models resistant to adversarial examples. arXiv preprint
arXiv:1706.06083, 2017.

[9] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple
and accurate method to fool deep neural networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2574–2582, 2016.

[10] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and
Ananthram Swami. The limitations of deep learning in adversarial settings. In Security and
Privacy (EuroS&P), 2016 IEEE European Symposium on, pages 372–387. IEEE, 2016.

[11] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K Reiter. Accessorize to a crime:
Real and stealthy attacks on state-of-the-art face recognition. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages 1528–1540. ACM,
2016.

[12] Yash Sharma and Pin-Yu Chen. Breaking the Madry Defense model with L1-based adversarial
examples. arXiv preprint arXiv:1710.10733, 2017.

[13] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Good-
fellow, and Rob Fergus. Intriguing properties of neural networks. In International Conference
on Learning Representations, 2014.

5

	Introduction
	Approach
	Experimental Results
	Conclusion
	Appendix

