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Abstract
Adversarial perturbations of normal images are
usually imperceptible to humans, but they can
seriously confuse state-of-the-art machine learn-
ing models. What makes them so special in the
eyes of image classifiers? In this paper, we show
empirically that adversarial examples mainly lie
in the low probability regions of the training dis-
tribution, regardless of attack types and targeted
models. Based on this discovery, we devised Pix-
elDefend, a new approach that purifies a mali-
ciously perturbed image by moving it back to-
wards the distribution seen in the training data.
The purified image is then run through an unmod-
ified classifier, making our method agnostic to
both the classifier and the attacking method. As
a result, PixelDefend can be used to protect al-
ready deployed models and be combined with
other model-specific defenses. Experiments show
that our method greatly improves resilience across
a wide variety of state-of-the-art attacking meth-
ods, increasing accuracy on the strongest attack
from 32% to 70% for CIFAR-10.

1. Introduction
Recent work has shown that small, carefully chosen modifi-
cations to the inputs of a neural network classifier can cause
the model to give incorrect labels (Szegedy et al., 2013;
Goodfellow et al., 2014). This weakness of neural network
models is particularly surprising because the modifications
required are often imperceptible, or barely perceptible, to
humans. What makes those small modifications so special
to deep neural networks?

In this paper, we propose and empirically evaluate the fol-
lowing hypothesis: Even though they have very small devia-
tions from clean images, adversarial examples largely lie in
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the low probability regions of the distribution that generated
the data used to train the model. Therefore, they fool clas-
sifiers mainly due to covariate shift. This is analogous to
training models on MNIST (LeCun et al., 1998) but testing
them on Street View House Numbers (Netzer et al., 2011).

To study this hypothesis, we first need to estimate the prob-
ability density of the underlying training distribution. To
this end, we leverage recent developments in generative
models. Specifically, we choose a PixelCNN (van den Oord
et al., 2016b) model for its state-of-the-art performance in
modeling image distributions (van den Oord et al., 2016a;
Salimans et al., 2017) and tractability of evaluating the data
likelihood. In the first part of the paper, we show that a
well-trained PixelCNN generative model is very sensitive to
adversarial inputs, typically giving them several orders of
magnitude lower likelihoods compared to those of training
and test images.

Since adversarial examples are generated from clean images
by adding imperceptible perturbations, it is possible to de-
contaminate them by searching for more probable images
within a small distance of the original ones. By limiting the
L∞ distance1, this image purification procedure generates
only imperceptible modifications to the original input, so
that the true labels of the purified images remain the same.
The resulting purified images have higher probability under
the training distribution, so we can expect that a classifier
trained on the clean images will have more reliable predic-
tions on the purified images. Moreover, for inputs which
are not corrupted by adversarial perturbations the purified
results remain in a high density region.

We use this intuition to build PixelDefend, an image pu-
rification procedure which requires no knowledge of the
attack nor the targeted classifier. PixelDefend approximates
the training distribution using a PixelCNN model. The
constrained optimization problem of finding the highest
probability image within an ε-ball of the original is compu-
tationally intractable, however, so we approximate it using
a greedy decoding procedure. Since PixelDefend does not
change the classification model, it can be combined with

1We note that there are many other ways of defining distance
of images. In this paper we use L∞ norm.
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other adversarial defense techniques, including adversarial
training (Goodfellow et al., 2014), to provide synergistic
improvements. We show experimentally that PixelDefend
performs exceptionally well in practice, leading to state-of-
the art results against a large number of attacks, especially
when combined with adversarial training.

2. Background
Attacking methods Given a test image X, an attacking
method tries to find a small perturbation ∆ with ‖∆‖∞ ≤
εattack, such that a classifier f gives different predictions
on Xadv , X + ∆ and X. Here colors in the image are
represented by integers from 0 to 255. In the experiments,
we test and compare Random perturbation (RAND), Fast
Gradient Sign Method (FGSM) (Goodfellow et al., 2014),
Basic Iterative Method (BIM) (Kurakin et al., 2016), Deep-
Fool (Moosavi-Dezfooli et al., 2016), and Carlini-Wagner
method (CW) (Carlini & Wagner, 2017b). More detailed
descriptions are provided in Appendix A.

Defense methods Current defense methods generally fall
into two classes. They either (1) change the network ar-
chitecture or training procedure to make it more robust,
or (2) modify adversarial examples to reduce their harm.
In this paper, we compare Adversarial training with both
FGSM and BIM adversarial examples (Goodfellow et al.,
2014; Madry et al., 2017), Label Smoothing (Warde-Farley
& Goodfellow, 2016)—both belong to the first category, and
Feature Squeezing (Xu et al., 2017a;b), which belongs to
the second category. We provide more detailed explanations
in Appendix B.

Notations and experimental settings We denote the
probability given by PixelCNN as pCNN(X). As a con-
venient representation of pCNN(X) for images, we also
use the concept of bits per dimension, which is defined
as BPD(X) , − log pCNN(X)/(I × J ×K × log 2) for an
image of resolution I × J and K channels.

We used the CIFAR-10 (Krizhevsky et al.) dataset in ex-
periments. Two state-of-the-art deep neural network im-
age classifiers are examined: ResNet (He et al., 2016) and
VGG (Simonyan & Zisserman, 2014). We use the Pixel-
CNN++ (Salimans et al., 2017) implementation for Pix-
elCNN, but replace the mixture of logistics output with
softmax. For more experimental settings, please refer to
Appendix C.

3. Distribution of adversarial examples
To examine the distribution of adversarial examples, we train
a PixelCNN model on the CIFAR-10 (Krizhevsky & Hinton,
2009) dataset and use its log-likelihood as an approximation

to the true underlying probability density. The adversarial
examples are generated with respect to a ResNet (He et al.,
2016) using εattack = 8, which gets 92% accuracy on the test
images.

Figure 1. Likelihoods of different perturbed images.

However, the distributions of log-likelihoods show consider-
able difference between perturbed images and clean images.
As summarized in Figure 1, even a 3% perturbation can
lead to systematic decrease of log-likelihoods. In Figure 2,
we additionally show the results of detecting adversarial
examples with PixelCNN log-likelihoods. Note that the
PixelCNN model has no information about the attacking
methods for producing those adversarial examples, and no
information about the ResNet model either.

Figure 2. ROC curves of detecting perturbed inputs using pCNN(X).
The clean training images are assigned negative labels while the
adversarial examples (or clean test images) have positive labels.

We can see from Figure 1 and Figure 2 that random pertur-
bations also push the images outside of the training distribu-
tion, even though they do not have the same adverse effect
on accuracy. We believe this is due to an inductive bias that
is shared by many neural network models but not inherent
to all models, as discussed further in Appendix D.
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4. Purifying images with PixelDefend
The basic idea behind PixelDefend is to purify input images,
by making small changes to them in order to move them
back towards the training distribution, i.e., move the images
towards a high-probability region. We then classify the
purified image using any existing classifier.

Formally, we have training image distribution p(X), and
input image X. We wish to find an image X∗ that maxi-
mizes p(X) subject to the constraint that X∗ is within the
εdefend-ball of X:

max
X∗

p(X∗) s.t. ‖X∗ −X‖∞ ≤ εdefend. (1)

Here εdefend reflects a trade-off, since large εdefend may
change the meaning of X while small εdefend may not be
sufficient for returning X to the correct distribution. In prac-
tice, we choose εdefend to be some value that overestimates
εattack but still keeps high accuracies on clean images. As in
Section 3, we approximate p(X) with the PixelCNN distri-
bution pCNN(X), which is trained on the same training set
as the classifier.

Algorithm 1 PixelDefend
Input: Image X, Defense parameter εdefend, Pre-trained

PixelCNN model pCNN
Output: Purified Image X∗

1: X∗ ← X
2: for each row i do
3: for each column j do
4: for each channel k do
5: x← X[i, j, k]
6: Set feasible range R ← [max(x −
εdefend, 0),min(x+ εdefend, 255)]

7: Compute the 256-way softmax pCNN(X
∗).

8: Update the purified image X∗[i, j, k] ←
argmaxz∈R pCNN[i, j, k, z]

9: end for
10: end for
11: end for

Surprisingly, it is hard to solve (1) with gradient-based meth-
ods. In fact, one of the advanced gradient-based optimiza-
tion method—L-BFGS-B (Byrd et al., 1995)—usually pro-
duces purified images with even lower log-likelihoods than
those of adversarial images (see Appendix E). For efficient
optimization, we instead use a greedy technique described in
Algorithm 1, which is similar to the greedy decoding process
typically used in sequence-to-sequence models (Sutskever
et al., 2014). Based on Ramachandran et al. (2017), PixelDe-
fend on average processes 3.6 images per second on one
NVIDIA TITAN Xp GPU for CIFAR-10 images. Visually,
purified images indeed look much cleaner than adversarially
perturbed ones. In Appendix I, we provide sampled purified
images for CIFAR-10.

4.1. Adaptive PixelDefend

One improvement is to tune εdefend adaptively based on the
probability of the input image under PixelCNN. In this way,
images that already have high probability under the training
distribution would have a very low εdefend preventing sig-
nificant modification, while low probability images would
have a high εdefend thus allowing significant modifications.
We implemented a very simple thresholding version of this,
which sets εdefend to zero if the input image probability is
below a threshold value, and otherwise leaves it fixed at a
manually chosen setting. In practice, we set this threshold
based on knowledge of the set of possible attacks, so strictly
speaking, the adaptive version of our technique is no longer
attack-agnostic.

4.2. Experimental results

We carried out a comprehensive set of experiments to test
various defenses versus attacks. Detailed information on
experimental settings is provided in Appendix C. All experi-
mental results are summarized in Tab. 1. In the upper part of
the tables, we show how the various baseline defenses fare
against each of the attacks, while in the lower part of the
tables we show how our PixelDefend technique works. The
cells are formated as x/y/z, where x denotes the accuracy
(%) on images attacked with εattack = 2, while y denotes
the accuracy with εattack = 8, and z is the accuracy with
εattack = 16. We use the same εdefend for different εattack’s to
show that PixelDefend is insensitive to εattack.

From the table we observe that adversarial training success-
fully defends against the basic FGSM attack, but cannot
defend against the more advanced ones. Consistent with
Madry et al. (2017), adversarial training with BIM examples
is more successful at preventing a wider spectrum of attacks.
For example, it improves the accuracy on strongest attack
from 2% to 32% on CIFAR-10 when εattack = 8. But the
numbers are still not ideal even with respect to BIM attack
itself. As in Tab. 1, it only gets 6% on BIM and 8% on CW
when εattack = 16. We also observe that label smoothing is
only effective against simple FGSM attack. Model-agnostic
methods, such as feature squeezing, can be combined with
other defenses for strengthened performance. We observe
that combining it with adversarial training indeed makes it
more robust. Actually, Tab. 1 shows that feature squeezing
combined with adversarial training dominates using feature
squeezing along in all settings. It also gets good perfor-
mance on DeepFool and CW attacks. However, for iterative
attacks with larger perturbations, i.e., BIM, feature squeez-
ing performs poorly. On CIFAR-10, it only gets 2% and 0%
accuracy on BIM with εattack = 8 and 16 respectively.

PixelDefend, our model-agnostic and attack-agnostic
method, performs well on different classifiers (ResNet and
VGG) and different attacks without modification. In addi-
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Table 1. CIFAR-10 (εattack = 2/8/16, εdefend = 16)

NETWORK TRAINING
TECHNIQUE CLEAN RAND FGSM BIM DEEP

FOOL CW STRONGEST
ATTACK

ResNet Normal 92/92/92 92/87/76 33/15/11 10/00/00 12/06/06 07/00/00 07/00/00

VGG Normal 89/89/89 89/88/80 60/46/30 44/02/00 57/25/11 37/00/00 37/00/00

ResNet

Adversarial FGSM 91/91/91 90/88/84 88/91/91 24/07/00 45/00/00 20/00/07 20/00/00

Adversarial BIM 87/87/87 87/87/86 80/52/34 74/32/06 79/48/25 76/42/08 74/32/06

Label Smoothing 92/92/92 91/88/77 73/54/28 59/08/01 56/20/10 30/02/02 30/02/01

Feature Squeezing 84/84/84 83/82/76 31/20/18 13/00/00 75/75/75 78/78/78 13/00/00

Adversarial FGSM
+ Feature Squeezing

86/86/86 85/84/81 73/67/55 55/02/00 85/85/85 83/83/83 55/02/00

ResNet Normal + PixelDefend 85/85/88 82/83/84 73/46/24 71/46/25 80/80/80 78/78/78 71/46/24

VGG Normal + PixelDefend 82/82/82 82/82/84 80/62/52 80/61/48 81/76/76 81/79/79 80/61/48

ResNet

Adversarial FGSM
+ PixelDefend 88/88/86 86/86/87 81/68/67 81/69/56 85/85/85 84/84/84 81/69/56

Adversarial FGSM
+ Adaptive PixelDefend 90/90/90 86/87/87 81/70/67 81/70/56 82/81/82 81/80/81 81/70/56

tion, we can see that augmenting basic adversarial training
with PixelDefend can sometimes double the accuracies. We
hypothesize that the purified images from PixelDefend are
still not perfect, and adversarially trained networks have
more toleration for perturbations. This also corroborates
the plausibility and benefit of combining PixelDefend with
other defenses.

Furthermore, PixelDefend can simultaneously obtain accu-
racy above 70% for all other attacking techniques, while
ensuring that performance on clean images only declines
slightly. Models with PixelDefend consistently outperform
other methods with respect to the strongest attack. On
CIFAR-10, it increases the accuracy from 74% to 81%,
32% to 70% and 6% to 56%, for εattack = 2, 8, and 16
respectively.

4.3. End-to-End attack of PixelDefend

A natural question that arises is whether we can generate a
new class of adversarial examples targeted specifically at
the combined PixelDefend architecture of first purifying the
image and then using an existing classifier to predict the la-
bel of the purified image. We have three pieces of empirical
evidence to believe that such adversarial examples are hard
to find in general. First, we attempted to apply the iterative
BIM attack to an end-to-end differentiable version of Pix-
elDefend generated by unrolling the PixelCNN purification
process. However we found the resulting network was too
deep and led to problems with vanishing gradients (Bengio
et al., 1994), resulting in adversarial images that were iden-
tical to the original images. Moreover, attacking the whole
system is very time consuming. Empirically, it took about
10 hours to generate 100 attacking images with one TITAN
Xp GPU which failed to fool PixelDefend. Secondly, we
found the optimization problem in Eq. (1) was not amenable
to gradient descent (see more discussions in Appendix E).

This makes gradient-based attacks especially difficult. Last
but not least, the generative model and classifier are trained
separately and have independent parameters. Therefore, the
perturbation direction that leads to higher probability images
has a smaller correlation with the perturbation direction that
results in misclassification. Accordingly, it is harder to find
adversarial examples that can fool both of them together.
However, we will open source our codes and look forward
to any possible attack from the community.

5. Conclusion
In this work, we discovered that state-of-the-art neural den-
sity models, e.g., PixelCNN, can detect small perturbations
with high sensitivity. This sensitivity broadly exists for a
large number of perturbations generated with different meth-
ods. An interesting fact is that PixelCNN is only sensitive
in one direction—it is relatively easy to detect perturbations
that lead to lower probabilities rather than higher probabili-
ties.

Based on the sensitivity, we explore the idea of purifying ad-
versarial examples. We propose the PixelDefend algorithm,
and experimentally show that returning adversarial exam-
ples to high probability regions of the training distribution
can significantly decrease their damage to classifiers. Differ-
ent from many other defensive techniques, PixelDefend is
model-agnostic and attack-agnostic, which means it can be
combined with other defenses to improve robustness without
modifying the classification model. As a result, PixelDe-
fend is a practical and effective defense against adversarial
inputs.

There are also some related ideas which we didn’t men-
tion here due to space constraints. We discuss them in
Appendix F.
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A. Attacking methods
Random perturbation (RAND) Random perturbation is arguably the weakest attacking method, and we include it as the
simplest baseline. Formally, the randomly perturbed image is given by

Xadv = X + U(−bεattackc, bεattackc),

where U(a, b) denotes an element-wise uniform distribution of integers from [a, b].

Fast gradient sign method (FGSM) Goodfellow et al. (2014) proposed the generation of malicious perturbations in the
direction of the loss gradient ∇XL(X, y), where L(X, y) is the loss function used to train the model. The adversarial
examples are computed by

Xadv = X + εattack sign(∇XL(X, y)).

Basic iterative method (BIM) Kurakin et al. (2016) tested a simple variant of the fast gradient sign method by applying
it multiple times with a smaller step size. Formally, the adversarial examples are computed as

Xadv
0 = X, Xadv

n+1 = Clipεattack
X

{
Xadv
n + α sign(∇XL(X

adv
n , y))

}
,

where Clipεattack
X means we clip the resulting image to be within the εattack-ball of X. Following Kurakin et al. (2016), we

set α = 1 and the number of iterations to be bmin(εattack + 4, 1.25εattack)c. This method is also called Projected Gradient
Descent (PGD) in (Madry et al., 2017).

DeepFool DeepFool (Moosavi-Dezfooli et al., 2016) was the first method trying to minimize the perturbation needed to
have a misclassification. It works by iteratively linearizing the decision boundary. However, compared to FGSM and BIM,
this method is much slower in practice. We clip the resulting image so that its perturbation is no larger than εattack.

Carlini-Wagner (CW) Carlini & Wagner (2017b) proposed an efficient optimization objective for iteratively finding
the adversarial examples with the smallest perturbations. As with DeepFool, we clip the output image to make sure the
perturbations are limited by εattack.

B. Defense methods
Adversarial training This defense works by generating adversarial examples on-the-fly during training and including
them into the training set. FGSM adversarial examples are the most commonly used ones for adversarial training, since they
are fast to generate and easy to train. Although training with higher-order adversarial examples (e.g., BIM) has witnessed
some success in small datasets (Madry et al., 2017), other work has reported failure in larger ones (Kurakin et al., 2016). We
consider both variants in our work.

Label smoothing In contrast to adversarial training, label smoothing (Warde-Farley & Goodfellow, 2016) is agnostic to
the attack method. It converts one-hot labels to soft targets, where the correct class has value 1− ε while the other (wrong)
classes have value ε/(N − 1). Here ε is a small constant and N is the number of classes. When the classifier is re-trained
on these soft targets rather than the one-hot labels it is significantly more robust to adversarial examples. This method
was originally devised to achieve a similar effect as defensive distillation (Papernot et al., 2016c), and their performance is
comparable. We didn’t compare to defensive distillation since it is more computationally expensive.

Feature squeezing Feature squeezing (Xu et al., 2017a) is both attack-agnostic and model-agnostic. Given any input
image, it first reduces the color range from [0, 255] to a smaller value, and then smooths the image with a median filter. The
resulting image is then passed to a classifier for predictions. Since this technique does not depend on attacking methods and
classifiers, it can be combined with other defensive methods such as adversarial training, similar to PixelDefend.

C. Experimental settings
Dataset CIFAR-10 is a dataset that is broadly used for image classification tasks. It consists of 60, 000 examples, where
50, 000 are used for training and 10, 000 for testing, and each sample is a 32 × 32 color image associated with 1 of 10
classes.
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Adversarial Training We have tested adversarial training with both FGSM and BIM examples. During training, we take
special care of the label leaking problem as noted in Kurakin et al. (2016)—we use the predicted labels of the model to
generate adversarial examples, instead of using the true labels. This prevents the adversarially trained network to perform
better on adversarial examples than clean images by simply retrieving ground-truth labels. Following Kurakin et al. (2016),
we also sample εattack from a truncated Gaussian distribution for generating FGSM or BIM adversarial examples, so that
the adversarially trained network won’t overfit to any specific εattack. This is different from Madry et al. (2017), where the
authors train and test with the same εattack. In addition, we randomly sample εattack from N (0, δ), take the absolute value and
truncate it to [0, 2δ], where δ = 8.

Feature Squeezing For implementing the feature squeezing defense, we reduce the number of colors to 32 for CIFAR-10.
The numbers are chosen to make sure color reduction will not lead to significant deterioration of image quality. After color
depth reduction, we apply a 2× 2 median filter with reflective paddings, since it is reported in Xu et al. (2017b) to be most
effective for preventing CW attacks.

Models We use ResNet (62-layer) and VGG (16-layer) as classifiers. In our experiments, normally trained networks
have the same architectures as adversarially trained networks. In practive, VGG is more robust than ResNet due to using
of dropout layers. The network architecture details are described in Appendix G. For the PixelCNN generative model,
we adopted the implementation of PixelCNN++ (Salimans et al., 2017), but modified the output from mixture of logistic
distributions to softmax.

PixelCNN The PixelCNN (van den Oord et al., 2016b; Salimans et al., 2017) is a generative model with tractable likelihood
especially designed for images. The model defines the joint distribution over all pixels by factorizing it into a product of
conditional distributions.

pCNN(X) =
∏
i

pCNN(xi|x1:(i−1)).

The pixel dependencies are in raster scan order (row by row and column by column within each row). We train the PixelCNN
model for each dataset using only clean (not perturbed) image samples. In Appendix H, we provide clean sample images as
well as generated image samples from PixelCNN (see Figure 4).

Adaptive Threshold We chose the adaptive threshold discussed in Section 4.1 using validation data. We set the threshold
at the lowest value which did not decrease the performance of the strongest adversary. In Tab. 1, the threshold was chosen to
be 3.2. As a reference, the mean value of bits per dimension for clean CIFAR-10 test images is 3.0. However, we admit that
using a validation set to choose the best threshold makes the adaptive version of PixelDefend not strictly attack-agnostic.

D. On random perturbations
One may observe that random perturbations also live outside of the high density area. Although many classifiers are robust
to random noise, it is not a property granted by the dataset. The fact is that robustness to random noise could be from model
inductive bias, and there exist classifiers which have high generalization performance on clean images, but can be attacked
by small random perturbations.

It is easy to construct a concrete classifier that are susceptible to random perturbations. Our ResNet on CIFAR-10 gets
92.0% accuracy on the test set and 87.3% on randomly perturbed test images with εattack = 8. According to our PixelCNN,
175 of 10000 test images have a bits per dimension (BPD) larger than 4.5, while the number for random images is 9874.
Therefore, we can define a new classifier

ResNet’(X) ,

{
ResNet(X), BPD(X) < 4.5

random label, BPD(X) ≥ 4.5
,

which will get roughly 92%× 9825/10000 + 10%× 175/10000 ≈ 90.6% accuracy on the test set, while only 87.3%×
126/10000 + 10%× 9874/10000 ≈ 11.0% accuracy on the randomly perturbed images. This classifier has comparable
generalization performance to the original ResNet, but will give incorrect labels to most randomly perturbed images.
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Figure 3. The bits-per-dimension distributions of purified images from FGSM adversarial examples. We tested two purification methods,
L-BFGS-B and greedy decoding, the latter of which is used in PixelDefend. A good purification method should give images that have
lower bits per dimension compared to FGSM images and ideally similar bits per dimension compared to clean ones.

E. Gradient-based Optimization
Surprisingly, even gradient-based optimization faces great difficulty on (1). We found that one advanced methods in
gradient-based constrained optimization, L-BFGS-B (Byrd et al., 1995) (we use the scipy implementation based on Zhu
et al. (1997)), actually decreases pCNN(X) for most random initializations within the εdefend-ball. To show the effectiveness
of Algorithm 1 compared to L-BFGS-B, we take the first 10 images from CIFAR-10 test set, attack them by FGSM with
εattack = 8, and purify them with L-BFGS-B and PixelDefend respectively. We used random start points for L-BFGS-B
and repeated 100 times for each image. As depicted in Figure 3, most L-BFGS-B attempts failed at minimizing the bits
per dimension of FGSM adversarial examples. Because of the rugged gradient landscape of PixelCNN, L-BFGS-B even
results in images that have lower probabilities. In contrast, PixelDefend works much better in increasing the probabilities of
purified images, although their probabilities are still lower compared to clean ones.

F. Related work
Most recent work on detecting adversarial examples focuses on adding an outlier class detection module to the classifier,
such as Grosse et al. (2017), Gong et al. (2017) and Metzen et al. (2017). Those methods require the classification model to
be changed, and are thus not model-agnostic. Feinman et al. (2017) also presents a detection method based on kernel density
estimation and Bayesian neural network uncertainty. However, Carlini & Wagner (2017a) shows that all those methods can
be bypassed.

Grosse et al. (2017) also studied the distribution of adversarial examples from a statistical testing perspective. They reported
the same discovery that adversarial examples are outside of the training distribution. However, our work is different from
theirs in several important aspects. First, the kernel-based two-sample test used in their paper needs a large number of
suspicious inputs, while our method only requires one data point. Second, they mainly tested on first-order methods such
as FGSM and JSMA (Papernot et al., 2016b). We show the efficacy of PixelCNN on a wider range of attacking methods,
including both first-order and iterative methods. Third, we further demonstrate that random perturbed inputs are also outside
of the training distribution.

Some other work has focused on modifying the classifier architecture to increase its robustness, e.g., Gu & Rigazio (2014),
Cisse et al. (2017) and Nayebi & Ganguli (2017). Although they have witnessed some success, such modifications of models
might limit their representative power and are also not model-agnostic.

Our basic idea of moving points to higher-density regions is also present in other machine learning methods not specifically
designed for handling adversarial data; for example, the manifold denoising method of Hein & Maier (2007), the direct
density gradient estimation of Sasaki et al. (2014), and the denoising autoencoders of Vincent et al. (2008) all move data
points from low to high-density regions. In the future some of these methods could be adapted to amortize the purification
process directly, that is, to learn a purification network.
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G. Image classifier architectures
G.1. ResNet classifier for CIFAR-10 & Fashion MNIST

NAME CONFIGURATION

Initial Layer conv (filter size: 3× 3, feature maps: 16 (4), stride size: 1× 1)

Residual Block 1

batch normalization & leaky relu
conv (filter size: 3× 3, feature maps: 16, stride size: 1× 1)

batch normalization & leaky relu
conv (filter size: 3× 3, feature maps: 16, stride size: 1× 1)

residual addition

×10 times

Residual Block 2

batch normalization & leaky relu
conv (filter size: 3× 3, feature maps: 32, stride size: 2× 2)

batch normalization & leaky relu
conv (filter size: 3× 3, feature maps: 32, stride size: 1× 1)

average pooling & padding & residual addition
batch normalization & leaky relu

conv (filter size: 3× 3, feature maps: 32, stride size: 1× 1)
batch normalization & leaky relu

conv (filter size: 3× 3, feature maps: 32, stride size: 1× 1)
residual addition

×9 times

Residual Block 3

batch normalization & leaky relu
conv (filter size: 3× 3, feature maps: 64, stride size: 2× 2)

batch normalization & leaky relu
conv (filter size: 3× 3, feature maps: 64, stride size: 1× 1)

average pooling & padding & residual addition
batch normalization & leaky relu

conv (filter size: 3× 3, feature maps: 64, stride size: 1× 1)
batch normalization & leaky relu

conv (filter size: 3× 3, feature maps: 64, stride size: 1× 1)
residual addition

×9 times

Pooling Layer batch normalization & leaky relu & average pooling
Output Layer fc_10 & softmax

G.2. VGG classifier for CIFAR-10 & Fashion MNIST

NAME CONFIGURATION
conv (filter size: 3× 3, feature maps: 16, stride size: 1× 1)

batch normalization & relu ×2 timesFeature Block 1
max pooling (stride size: 2× 2)

conv (filter size: 3× 3, feature maps: 128, stride size: 1× 1)
batch normalization & relu ×2 timesFeature Block 2

max pooling (stride size: 2× 2)
conv (filter size: 3× 3, feature maps: 512, stride size: 1× 1)

batch normalization & relu ×3 timesFeature Block 3
max pooling (stride size: 2× 2)

conv (filter size: 3× 3, feature maps: 512, stride size: 1× 1)
batch normalization & relu ×3 timesFeature Block 4

max pooling (stride size: 2× 2) & flatten

Classifier Block
dropout & fc_512 & relu

dropout & fc_10 & softmax
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H. Sampled images from PixelCNN
H.1. CIFAR-10

Figure 4. True and generated images from CIFAR-10. The upper part shows true images sampled from the dataset while the bottom part
shows generated images from PixelCNN.
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I. Sampled purified images from PixelDefend
I.1. CIFAR-10

Figure 5. The upper part shows adversarial images generated from FGSM attack while the bottom part shows corresponding purified
images by PixelDefend. Here εattack = 8 and εdefend = 16.
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