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Abstract

In order for black-box models to be deployed and trusted in many applications, it
is crucial to be able to reliably explain why the model makes certain predictions.
A fundamental question is: how much can we trust the interpretation itself? In
this paper, we show that interpretation of deep learning predictions is extremely
fragile in the sense that two perceptively indistinguishable inputs with the same
predicted label can be assigned very different interpretations. We systematically
characterize the fragility of several widely-used feature-importance and exemplar-
based interpretation methods to show that even small random perturbations can
affect interpretations, while new systematic perturbations can lead to dramatically
different interpretations without changing the label.

1 Introduction
As machine learning algorithms become increasingly complex, explanations for why an algorithm
makes certain decisions are ever more crucial. For example, if an AI system predicts a given
pathology image to be malignant, then the doctor would want to know what features in the image led
the algorithm to this classification. Therefore having interpretations for why certain predictions are
made is critical for establishing trust and transparency between the users and the algorithm (Lipton,
2016). The explanation itself, however, must be robust in order to establish human trust. Take the
pathology predictor: it would be highly disconcerting if, for a visually indistinguishable image with
the same prediction, a very different section is interpreted as being salient. Thus, even if the predictor
is robust (both images are correctly labeled as malignant), that the interpretation is fragile would still
be highly problematic in deployment.

Our contributions. In this paper, we show that widely-used neural network interpretation methods
are fragile in the following sense: perceptively indistinguishable images that have the same prediction
label by the neural network can often be given substantially different interpretations. We systemati-
cally investigate two classes of interpretation methods: methods that assign importance scores to each
feature (this includes simple gradient (Simonyan et al., 2013), DeepLift (Shrikumar et al., 2017), and
integrated gradient (Sundararajan et al., 2017)), as well as a method that assigns importance scores to
each training example: influence functions (Koh & Liang, 2017). For both classes of interpretations,
we show that the importance of individual features or training examples is highly fragile to even small
random perturbations to the input image. Moreover we show how targeted perturbations can lead to
dramatically different global interpretations (Fig. 1).
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Figure 1: The fragility of feature-importance maps. Using three popular feature importance
methods, top row shows the the original images and their saliency maps and the bottom row
shows the perturbed images (using the center attack with ε = 8, as described in Section 3) and
the corresponding saliency maps. In all three images, the predicted label has not changed due to
perturbation while the saliency maps of the perturbed images are meaningless.

2 Interpretation Methods for Neural Network Predictions

2.1 Feature-Importance Interpretation
Given the sample xt ∈ Rd, network’s prediction l, and predicted label’s pre-softmax score Sl(xt),
feature-importance methods assign an absolute score to each input dimension relative to its effect
on score. Here we normalize the scores for each image by the sum of the scores to ensures that our
attacks change not just the absolute feature saliencies, but their relative values.

Simple gradient method (Baehrens et al., 2010; Simonyan et al., 2013). Uses a linear approx-
imation to detect the sensitivity of the score to perturbing each of the dimensions: R(xt)j =

|∇xSl(xt)j |/
∑d
i=1|∇xSl(xt)i|.

Integrated gradients To solve the saturation problem of simple gradient method, Sundararajan
et al. (2017) introduced the integrated gradients method where given a reference input point x0,
R(xt) =

∣∣∣xt−x0

M

∑M
k=1∇xSl

(
k
M (xt − x0) + x0

)∣∣∣ , which is then normalized by its sum.

DeepLIFT Given a reference input x0, DeepLIFT decomposes the change in score (Sl(xt) −
Sl(xt))) backwards through the neural network. The score change from each layer is propagated to
the previous layer proportional to its changes in the neuronal activations from the reference until the
input layer is reached.We use DeepLIFT with the Rescale rule (Shrikumar et al., 2017)

2.2 Exemplar-Based Method: Influence Functions
Given training examples, {(xi, yi)} these methods find out which training examples, if up-weighted
or down-weighted during training time, would have the biggest effect on the loss of the test input
(xt, yt). Koh & Liang (2017) proposed the following as the influence function:

I(zi, zt) = −∇θL(zt, θ̂)>H−1θ̂ ∇θL(zi, θ̂), (1)

where zi
def
= (xi, yi) and L(z, θ̂) is the loss of the network with parameters set to θ̂. Hθ̂

def
=

1
n

∑n
i=1∇2

θL(zi, θ̂) is the empirical Hessian of the network calculated over the training examples.

2.3 Metrics for Interpretation Similarity
We use the Spearman (1904) rank correlation to compare interpretations and track how the relative
importance of features/examples has changed. In addition, beccause in many settings only the
dominant explanation is of interest, we also measure top-k intersection, defined to be the size of the
intersection of k most important features or examples.
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3 Random and Systematic Perturbation Methods
Random sign perturbation As baseline, we randomly perturb each pixel of the test image by ±ε.

Iterative attacks against feature-importance methods Described in Algorithm 1 in Appendix A,
we define two adversarial attacks against feature-importance methods, each of which consists of
iterative maximiziation of a differentiable interpretation dissimilarity function.

Gradient sign attack against influence functions We linearize (1) around the current input and
parameters. Constraining the `∞ of perturbation to ε, we obtain an optimal single-step perturbation:

δ = εsign(∇xtI(zi, zt)) = −εsign(∇xt∇θL(zt, θ̂)>H−1θ̂ ∇θL(zi, θ̂)︸ ︷︷ ︸
independent of xt

). (2)

which is the direction to decrease the influence of the 3 most influential training images of the original
test image2. Of course, this affects the influence of all of the other training images as well.3
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Figure 2: Comparison of adversarial attack algorithms on feature-importance methods. Ran-
dom sign perturbation already causes significant changes in both top-1000 intersection and rank order
correlation. This suggests that the saliency of individual or small groups of pixels can be extremely
fragile to the input and should be interpreted with caution. With targeted perturbations, we observe
more dramatic fragility. Even with a perturbation of L∞ = 2, the interpretations change significantly.
CIFAR results are displayed in Appendix D.

4 Experiments & Results
The models and data sets we used are described in Appendix B.

Results for feature-importance methods Fig. 1 depicts examples of center-shift attack. More
examples are displayed in Appendix C. Average results for 512 ImageNet test images are displayed
in Fig. 2.

2In other words, we generate the perturbation given by: −εsign(
∑3
i=1∇xt∇θL(zt, θ̂)>H−1

θ̂
∇θL(z(i), θ̂)),

where z(i) is the ith most influential training image of the original test image.
3We followed same setup as the original work; the influence is only calculated with respect to the parameters

that change during training. (Which are the parameters in the final layer of our network). See Section 4).
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Results for influence functions Fig. 3 shows a representative test image to which we have applied
the gradient sign attack. Although the prediction is the same, the most influential training examples
change. Additional examples can be found in Appendix E. Average results for 200 images of roses
and sunflowers are portrayed in Fig. 4.
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Figure 3: Gradient sign attack on influence functions. The top 3 training images identified by
influence functions are shown in the top row. Using the gradient sign attack, we perturb the test image
(with ε = 8) to produce the leftmost image in the second row. The 3 most influential images (targeted
by the attack) have decreased in influence, but the influences of other images have also changed.
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Figure 4: Comparison of random and targeted perturbations on influence functions. The effect
of random attacks is small and generally doesn’t affect the most influential images. A targeted attack,
however, can significantly affect (a) the rank correlation and (b) even change the make-up of the 5
most influential images.

5 Conclusion

Our main message is that robustness of the interpretation of a prediction is an important and chal-
lenging problem, especially as in many applications (e.g. many biomedical and social settings) users
are as interested in the interpretation as in the prediction itself. Our results raise concerns on how
interpretation is sensitive to noise and can be manipulated. We do not suggest that interpretations are
meaningless, just as adversarial attacks on predictions do not imply that neural networks are useless.

We show that these importance scores can be sensitive to even random perturbation. More dramatic
manipulations of interpretations can be achieved with our targeted perturbations, which raise security
concerns. A more thorough theoretical discussion could be found in Appendices F, H, G, and I.
While we focus on image data (ImageNet and CIFAR-10), because these are the standard benchmarks
for popular interpretation tools, this fragility issue can be wide-spread in biomedical, economic and
other settings where neural networks are increasingly used. Understanding interpretation fragility in
these applications and develop more robust methods are important agendas of research.
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Appendices

A Feature importance iterative attack algorithms

Algorithm 1 Iterative Feature-Importance Attacks
Input: test image xt, maximum norm of perturbation ε, normalized feature importance func-
tionR(·), number of iterations P , step size α
Define a dissimilarity function D to measure the change between interpretations of two images:

D(xt,x) =


−
∑
i∈B

R(x)i for top-k attack

||C(x)−C(xt)||2 for mass-center attack,

where B is the set of the k largest dimensionsa ofR(xt), and C(·) is the center of saliency massb.

Initialize x0 = xt
for p ∈ {1, . . . , P} do

Perturb the test image in the direction of signed gradientc of the dissimilarity function:

xp = xp−1 + α · sign(∇xD(xt,x
p−1))

If needed, clip the perturbed input to satisfy the norm constraint: ||xp − xt||∞ ≤ ε
end for
Among {x1, . . . ,xP }, return the element with the largest value for the dissimilarity function and
the same prediction as the original test image.

aThe goal is to damp the saliency scores of the k features originally identified as the most important.
bThe center of mass is defined for a W ×H image as:

C(x)
def
=

∑
i∈{1,...,W}

∑
j∈{1,...,H}

R(x)i,j [i, j]
T

cIn some networks, such as those with ReLUs, this gradient is always 0. To attack interpretability in such
networks, we replace the ReLU activations with their smooth approximation (softplus) when calculating the
gradient and generate the perturbed image using this approximation. The perturbed images that result are
effective adversarial attacks against the original ReLU network, as discussed in Section 4.

B Description of the CIFAR-10 classification network

For feature-importance methods ILSVRC2012 (ImageNet classification challenge data set) (Rus-
sakovsky et al., 2015) and CIFAR-10 (Krizhevsky, 2009) data sets were used. For the ImageNet
classification data set, we used a pre-trained SqueezeNet4 (Iandola et al., 2016) and for CIFAR-10
we trained our following network trained the using ADAM optimizer (Kingma & Ba, 2014) with
default parameters. The resulting test accuracy using ReLU activation was 73%. For the experiment
in Fig, 11(a), we replaced ReLU activation with Softplus and retrained the network (with the ReLU
network weights as initial weights). The resulting accuracy was 73%.

4https://github.com/rcmalli/keras-squeezenet
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Network Layers

3× 3 conv. 96 ReLU
3× 3 conv. 96 ReLU
3× 3 conv. 96 Relu

Stride 2
3× 3 conv. 192 ReLU
3× 3 conv. 192 ReLU
3× 3 conv. 192 Relu

Stride 2
1024 hidden sized feed forward

We used pixel-wise and the channel-wise mean images as the CIFAR-10 and ImageNet reference
points respectively.5 We ran all iterative attack algorithms for P = 300 iterations with step size
α = 0.5.

To evaluate the robustness of influence functions, we followed a similar experimental setup to that of
the original authors: we trained an InceptionNet v3 with all but the last layer frozen (the weights were
pre-trained on ImageNet and obtained from Keras6). The last layer was trained on a binary flower
classification task (roses vs. sunflowers), using a data set consisting of 1,000 training images7. This
data set was chosen because it consisted of images that the network had not seen during pre-training
on ImageNet. The network achieved a validation accuracy of 97.5% on this task.

C Additional examples of feature importance perturbations

Here we provide three more examples from ImageNet. For each example, all three methods of feature
importance are attacked by random sign noise and our two targeted adversarial algorithms.

Figure 5: All of the images are classified as a airedale.

5 For the integrated gradients method we used parameter M=100.
6https://keras.io/applications/
7adapted from: https://www.tensorflow.org/tutorials/image_retraining

7



Figure 6: All of the images are classified as a damselfly.

Figure 7: All of the images are classified as a lighter.
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D Measuring center of mass movement
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Figure 8: Center-shift results for three feature importance methods on ImageNet: As discussed
in the paper, among our three measurements, center-shift measure was the most correlated measure
with the subjective perception of change in saliency maps. The results in Appendix C also show that
the center attack which resulted in largest average center-shift, also results in the most significant
subjective change in saliency maps. Random sign perturbations, on the other side, did not substantially
change the global shape of the saliency maps, though local pockets of saliency are sensitive. Just
like rank correlation and top-1000 intersection measures, the integrated gradients method is the most
robust method against adversarial attacks in the center-shift measure .
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Results for adversarial attacks against CIFAR-10 feature importance methods
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Figure 9: Results for adversarial attacks against CIFAR10 feature importance methods: Us-
ing750 CIFAR10 test images, the center-shift attack and top-k attack with k=100 achieve similar
results for rank correlation and top-100 intersection measurements and both are stronger than random
perturbations. Center-shift attack moves the center of mass more than two other perturbations. Among
different feature importance methods, integrated gradients is more robust than the two other methods.
Additionally, results for CIFAR10 show that images in this data set are more robust against adversarial
attack compared to ImageNet images which agrees with our analysis that higher dimensional inputs
are tend to be more fragile.

E Additional Examples of Adversarial Attacks on Influence Functions

In this appendix, we provide additional examples of the fragility of influence functions, analogous to
Fig. 3.
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Figure 10: Further examples of gradient-sign attacks on influence functions. (a) Here we see a
representative example of the most influential training images before and after a perturbation to the
test image. The most influential image before the attack is one of the least influential afterwards.
Overall, the influences of the training images before and after the attack are uncorrelated. (b) In this
example, the perturbation has remarkably caused the training images to almost completely reverse in
influence. Training images that had the most positive effect on prediction now have the most negative
effects and the other way round.

F Hessian analysis

In this section, we try to understand the source of interpretation fragility. The question is whether
fragility a consequence of the complex non-linearities of a deep network or a characteristic present
even in high-dimensional linear models, as is the case for adversarial examples for prediction
(Goodfellow et al., 2014). To gain more insight into the fragility of gradient based interpretations,
let S(x;W ) denote the score function of interest; x ∈ Rd is an input vector andW is the weights
of the neural network, which is fixed since the network has finished training. We are interested in
the Hessian H whose entries are Hi,j =

∂S
∂xi∂xj

. The reason is that the first order approximation of
gradient for some input perturbation direction δ ∈ Rd is: ∇xS(x+ δ)−∇xS(x) ≈ Hδ.

First, consider a linear model whose score for an input x is S = w>x. Here, ∇xS = w and
∇2
xS = 0; the feature-importance vector w is robust, because it is completely independent of x.

Thus, some non-linearity is required for interpretation fragility. A simple network that is susceptible
to adversarial attacks on interpretations consists of a set of weights connecting the input to a single
neuron followed by a non-linearity (e.g. logistic regression): S = g(w>x).

We can calculate the change in saliency map due to a small perturbation in x → x + δ. The
first-order approximation for the change in saliency map will be equal to : H · δ = ∇2

xS · δ. In
particular, the saliency of the ith feature changes by (∇2

xS · δ)i and furthermore, the relative change
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is (∇2
xS · δ)i/(∇xS)i. For the simple network, this relative change is:

(ww>δg′′(w>x))i
(wg′(w>x))i

=
wiw

>δg′′(w>x)

wig′(w>x)
=
w>δg′′(w>x)

g′(w>x)
, (3)

where we have used g′(·) and g′′(·) to refer to the first and second derivatives of g(·). Note that
g′(w>x) and g′′(w>x) do not scale with the dimensionality of x because in general, independent
from the dimensionality, x and w are `2-normalized or have fixed `2-norm due to data preprocessing
and weight decay regularization. However, if we choose δ = εsign(w), then the relative change in
the saliency grows with the dimension, since it is proportional to the `1-norm of w. When the input
is high-dimensional—which is the case with images—the relative effect of the perturbation can be
substantial. Note also that this perturbation is exactly the sign of the first right singular vector of
the Hessian∇2

xS, which is appropriate since that is the vector that has the maximum effect on the
gradient of S. A similar analysis can be carried out for influence functions (see Appendix G).

For this simple network, the direction of adversarial attack on interpretability, sign(w) is the same as
the adversarial attack on prediction. This means that we cannot perturb interpretability independently
of prediction. For more complex networks, this is not the case and in Appendix H we show this
analytically for a simple case of a two-layer network. As an empirical test, in Fig. 11(a), we plot
the distribution of the angle between ∇xS and v1 (the first right singular vector of H which is the
most fragile direction of feature importance) for 1000 CIFAR10 images (Details of the network in
Appendix B). In Fig. 11(b), we plot the equivalent distribution for influence functions, computed
across all 200 test images. The result confirms that the steepest direction of change in interpretation
and prediction are generally orthogonal, justifying how the perturbations can change the interpretation
without changing the prediction.
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Figure 11: Orthogonality of Prediction
and Interpretation Fragile Directions (a)
The histogram of the angle between the
steepest direction of change in feature im-
portance and the steepest score change di-
rection. (b) The distribution of the angle
between the gradient of the loss function
and the steepest direction of change of in-
fluence of the most influential image.

G Dimensionality-Based Explanation for Fragility of Influence Functions

Here, we demonstrate that increasing the dimension of the input of a simple neural network increases
the fragility of that network with respect to influence functions, analogous to the calculations carried
out for importance-feature methods in Section ??. Recall that the influence of a training image
zi = (xi, yi) on a test image z = (x, y) is given by:

I(zi, z) = −∇θL(z, θ̂)>︸ ︷︷ ︸
dependent onx

H−1
θ̂
∇θL(zi, θ̂)︸ ︷︷ ︸

independent ofx

. (4)

We restrict our attention to the term in (4) that is dependent on x, and denote it by J def
= ∇θL. J

represents the infinitesimal effect of each of the parameters in the network on the loss function
evaluated at the test image.

Now, let us calculate the change in this term due to a small perturbation in x→ x+δ. The first-order
approximation for the change in J is equal to: ∇xJ · δ = ∇θ∇xL · δ. In particular, for the ith
parameter, Ji changes by (∇θ∇xL·δ)i and furthermore, the relative change is (∇θ∇xL·δ)i/(∇θL)i.
For the simple network defined in Section ??, this evaluates to (replacing θ withw for consistency of
notation):

(xw>δg′′(w>x))i
(xg′(w>x))i

=
xiw

>δg′′(w>x)

xig′(w>x)
=
w>δg′′(w>x)

g′(w>x)
, (5)
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where for simplicity, we have taken the loss to be L = |y − g(w>x)|, making the derivatives easier
to calculate. Furthermore, we have used g′(·) and g′′(·) to refer to the first and second derivatives of
g(·). Note that g′(w>x) and g′′(w>x) do not scale with the dimensionality of x because x andw
are generalized L2-normalized due to data preprocessing and weight decay regularization.

However, if we choose δ = εsign(w), then the relative change in the saliency grows with the
dimension, since it is proportional to the L1-norm of w.

H Orthogonality of steepest directions of change in score and feature
importance functions in a Simple Two-layer network

Consider a two layer neural network with activation function g(·), input x ∈ Rd, hidden vector
u ∈ Rh , and score function S), we have:

S = v · u =

h∑
j=1

vjuj

u = g(WTx)→ uj = wj .x

where wj = ||wj ||2ŵj . We have:

∇xS =

h∑
j=1

vj∇xuj =
h∑
j=1

vjg
′
(wj .x)wj

∇2
xS =

h∑
j=1

vj∇2
xuj =

h∑
j=1

vjg
′′
(wj .x)w

T
j wj

Now for an input sample x perturbation δ, for the change in feature importance:

∇xS(x+ δ)−∇xS(x) ≈ ∇2
xS · δ

which is equal to:
h∑
j=1

vjg
′′
(wj .x)(wj · δ)wj

We further assume that the input is high-dimensional so that h < d and for i 6= j we havewj ·wi = 0.
For maximizing the `2 norm of saliency difference we have the following perturbation direction:

δm = argmax||δ||=1||∇xS(x+ δ)−∇xS(x)|| = ŵk

where:
k = argmax|vjg

′′
(wj .x)| × ||wk||22

comparing which to the direction of feature importance:

∇xS(x)
||∇xS(x)||2

=

h∑
i=1

vjg
′
(wi · x)||wi||2

(
∑h
j=1 vjg

′(wj · x)||wj ||2)2
ŵi

we conclude that the two directions are not parallel unless g
′
(.) = g

′′
(.) which is not the case for

many activation functions like Softplus, Sigmoid, etc.

I Designing Interpretability-Robust Networks

The analyses and experiments in this paper have demonstrated that small perturbations in the input
layers of deep neural networks can have large changes in the interpretations. This is analogous to
classical adversarial examples, whereby small perturbations in the input produce large changes in
the prediction. In that setting, it has been proposed that the Lipschitz constant of the network be
constrained during training to limit the effect of adversarial perturbations (Szegedy et al., 2013). This
has found some empirical success (Cisse et al., 2017).
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Here, we propose an analogous method to upper-bound the change in interpretability of a neural
network as a result of perturbations to the input. Specifically, consider a network with K layers,
which takes as input a data point we denote as y0. The output of the ith layer is given by yi+1 = fi(yi)

for i = 0, 1 . . .K − 1. We define S def
= fK−1(fK−2(. . . f0(y0) . . .)) to be the output (e.g. score

for the correct class) of our network, and we are interested in designing a network whose gradient
S′ = ∇y0S is relatively insensitive to perturbations in the input, as this corresponds to a network
whose feature importances are robust.

A natural quantity to consider is the Lipschitz constant of S′ with respect to y0. By the chain rule, the
Lipschitz constant of S′ is

L(S′) = L( δyk
δyk−1

) . . .L(δy1
δy0

) (6)

Now consider the function fi(·), which maps yi to yi+1. In the simple case of the fully-connected
network, which we consider here, fi(yi) = gi(Wiyi), where gi is a non-linearity and Wi are the
trained weights for that layer. Thus, the Lipschitz constant of the ith partial derivative in (6) is the
Lipschitz constant of

δfi
δyi−1

=Wig
′
i(Wiyi−1),

which is upper-bounded by ||Wi||2 ·L(g′i(·)), where ||W || denotes the operator norm ofW (its largest
singular value)8. This suggests that a conservative upper ceiling for (6) is

L(S′) ≤
K−1∏
i=0

||Wi||2L(g′i(·)) (7)

Because the Lipschitz constant of the non-linearities g′i(·) are fixed, this result suggests that a
regularization based on the operator norms of the weights Wi may allow us to train networks that
are robust to attacks on feature importance. The calculations in this Appendix section is meant to be
suggestive rather than conclusive, since in practice the Lipschitz bounds are rarely tight.

8this bound follows from the fact that the Lipschitz constant of the composition of two functions is the
product of their Lipschitz constants, and the Lipschitz constant of the product of two functions is also the product
of their Lipschitz constants.
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